Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Computational Economics Using Fortran

(Professor of Economics, University of Wuerzburg), (Assistant Professor of Economics, University of Bonn)
  • Formāts: 552 pages
  • Izdošanas datums: 08-Mar-2018
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780192526571
  • Formāts - EPUB+DRM
  • Cena: 33,90 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 552 pages
  • Izdošanas datums: 08-Mar-2018
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780192526571

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Introduction to Computational Economics Using Fortran is the essential guide to conducting economic research on a computer. Aimed at students of all levels of education as well as advanced economic researchers, it facilitates the first steps into writing programs using Fortran.

Introduction to Computational Economics Using Fortran assumes no prior experience as it introduces the reader to this programming language. It shows the reader how to apply the most important numerical methods conducted by computational economists using the toolbox that accompanies this text. It offers various examples from economics and finance organized in self-contained chapters that speak to a diverse range of levels and academic backgrounds. Each topic is supported by an explanation of the theoretical background, a demonstration of how to implement the problem on the computer, and a discussion of simulation results. Readers can work through various exercises that promote practical experience and deepen their economic and technical insights.

This textbook is accompanied by a website from which readers can download all program codes as well as a numerical toolbox, and receive technical information on how to install Fortran on their computer.
Part I An Introduction To Fortran 90 And Numerical Methods
1 Fortran 90: A simple programming language
3(36)
1.1 About Fortran in general
3(3)
1.1.1 The history of Fortran
3(1)
1.1.2 Why Fortran?
4(1)
1.1.3 The workings of high-level programming languages
5(1)
1.1.4 Fortran compilers for Windows, Mac, and Linux
6(1)
1.2 Imperative Fortran programs
6(13)
1.2.1 The general structure of Fortran programs
7(1)
1.2.2 The declaration of variables
7(1)
1.2.3 The basics of imperative programming
8(3)
1.2.4 Control flow statements
11(5)
1.2.5 The concept of arrays
16(3)
1.3 Subroutines and functions
19(4)
1.4 Modules and global variables
23(4)
1.4.1 Storing code in a module
23(2)
1.4.2 The concept of global variables
25(2)
1.5 Installing the toolbox
27(1)
1.6 Plotting graphs with the toolbox and GNUPIot
28(6)
1.6.1 Two-dimensional plotting
28(3)
1.6.2 Three-dimensional plotting
31(3)
1.7 Further reading
34(1)
1.8 Exercises
35(4)
2 Numerical solution methods
39(74)
2.1 Matrices, vectors, and linear equation systems
39(8)
2.1.1 Matrices and vectors in Fortran
39(1)
2.1.2 Solving linear equation systems
40(7)
2.2 Nonlinear equations and equation systems
47(13)
2.2.1 Bisection search in one dimension
48(3)
2.2.2 Newton's method in one dimension
51(3)
2.2.3 Fixed-point iteration methods
54(2)
2.2.4 Multidimensional nonlinear equation systems
56(4)
2.3 Function minimization
60(8)
2.3.1 The Golden-Search method
61(2)
2.3.2 Brent's and Powell's algorithms
63(4)
2.3.3 The problem of local and global minima
67(1)
2.4 Numerical integration
68(9)
2.4.1 Summed Newton-Cotes methods
69(3)
2.4.2 Gaussian quadrature
72(5)
2.5 Random variables, distributions, and simulation
77(8)
2.5.1 Random variables and their distribution
77(4)
2.5.2 Simulating realizations of random variables
81(4)
2.6 Function approximation and interpolation
85(15)
2.6.1 Polynominal interpolation
88(3)
2.6.2 Piecewise polynomial interpolation
91(4)
2.6.3 A two-dimensional interpolation example
95(5)
2.7 Linear programming
100(5)
2.7.1 Graphical solution to linear programs in standard form
102(1)
2.7.2 The simplex algorithm
103(2)
2.8 Further reading
105(1)
2.9 Exercises
106(7)
Part II Computational Economics For Beginners
3 The static general equilibrium model
113(26)
3.1 The basic economy model
113(10)
3.1.1 The command optimum
113(2)
3.1.2 The market solution
115(4)
3.1.3 Variable labour supply
119(1)
3.1.4 Public sector and tax incidence analysis
120(3)
3.2 Extensions of the basic model
123(11)
3.2.1 Imperfect labour markets and unemployment policy
123(3)
3.2.2 Intermediate goods in production
126(4)
3.2.3 Open economies and international trade
130(4)
3.3 Further reading
134(1)
3.4 Exercises
134(5)
4 Topics in finance and risk management
139(66)
4.1 Mean-variance portfolio theory
139(12)
4.1.1 Portfolio choice with risky assets
139(4)
4.1.2 Introducing risk-free assets
143(3)
4.1.3 Short-selling constraints
146(3)
4.1.4 Monte Carlo minimization
149(2)
4.2 Option pricing theory
151(13)
4.2.1 The binomial approach by Cox-Ross-Rubinstein
152(3)
4.2.2 The Black-Scholes formula
155(3)
4.2.3 Numerical implementation of both approaches
158(3)
4.2.4 Option pricing with Monte Carlo simulation
161(3)
4.3 Managing credit risk with corporate bonds
164(20)
4.3.1 Modelling credit risk with a single corporate bond
164(9)
4.3.2 Credit risk in a bond portfolio
173(11)
4.4 Mortality risk management
184(14)
4.4.1 Modelling longevity risk
184(5)
4.4.2 Pricing and risk analysis of insurance products
189(7)
4.4.3 Optimization of a mortality portfolio
196(2)
4.5 Appendix
198(2)
4.6 Further reading
200(1)
4.7 Exercises
201(4)
5 The life-cycle model and intertemporal choice
205(20)
5.1 Why do people save?
205(9)
5.1.1 Optimal savings in a certain world
205(2)
5.1.2 Uncertain labour income and precautionary savings
207(5)
5.1.3 Uncertain capital and labour income
212(2)
5.2 Where do people save and invest?
214(7)
5.2.1 Uncertain capital income and portfolio choice
214(4)
5.2.2 Uncertain lifespan and annuity choice
218(3)
5.3 Further reading
221(1)
5.4 Exercises
222(3)
6 The overlapping generations model
225(28)
6.1 General structure and long-run equilibrium
225(9)
6.1.1 Demographics, behaviour and markets
225(4)
6.1.2 Computation of the long-run equilibrium
229(3)
6.1.3 Long-run analysis of policy reforms
232(2)
6.2 Transitional dynamics and welfare analysis
234(16)
6.2.1 Computation of transitional dynamics
235(5)
6.2.2 Generational welfare and aggregate efficiency
240(5)
6.2.3 Comprehensive analysis of policy reforms
245(5)
6.3 Further reading
250(1)
6.4 Exercises
250(3)
7 Extending the OLG model
253(36)
7.1 Accounting for variable labour supply
253(10)
7.1.1 The household decision problem
254(1)
7.1.2 Functional forms and numerical implementation
255(3)
7.1.3 Simulation results and economic interpretations
258(3)
7.1.4 A note on labour-augmenting technological progress
261(2)
7.2 Human capital and the growth process
263(11)
7.2.1 Education investment and externalities
264(2)
7.2.2 Numerical implementation and simulation
266(4)
7.2.3 Human-capital spillovers and endogenous growth
270(1)
7.2.4 Numerical implementation and simulation
271(3)
7.3 Longevity risk and annuitization
274(8)
7.3.1 The households' problem without annuity markets
274(3)
7.3.2 Numerical implementation and simulation
277(2)
7.3.3 Introducing private annuity markets
279(3)
7.4 Further reading
282(1)
7.5 Exercises
282(7)
Part III Advanced Computational Economics
8 Introduction to dynamic programming
289(34)
8.1 Motivation: The cake-eating problem
289(9)
8.1.1 The all-in-one solution
290(1)
8.1.2 The dynamic programming approach
291(4)
8.1.3 An analytical solution
295(3)
8.2 Numerical solution by value function iteration
298(15)
8.2.1 Grid search
301(5)
8.2.2 Optimization and interpolation
306(7)
8.3 Numerical solution by policy function iteration
313(7)
8.3.1 Root-finding and interpolation
314(2)
8.3.2 The method of endogenous gridpoints
316(4)
8.4 Further reading
320(1)
8.5 Exercises
321(2)
9 Dynamic macro I: Infinite horizon models
323(83)
9.1 The basic neoclassical growth model
323(18)
9.1.1 The model economy
324(5)
9.1.2 Numerical implementation
329(5)
9.1.3 A model with a public sector
334(7)
9.2 The stochastic growth model
341(13)
9.2.1 Modelling aggregate uncertainty
341(3)
9.2.2 A numerical implementation using discretized shocks
344(6)
9.2.3 Simulating time paths
350(2)
9.2.4 Speeding up the computational process
352(2)
9.3 The real business-cycle model
354(20)
9.3.1 A dynamic program with endogenous labour supply
354(2)
9.3.2 Numerical implementation with policy function iteration
356(2)
9.3.3 Comparing model results to the data
358(5)
9.3.4 The welfare costs of business-cycle fluctuations
363(6)
9.3.5 Procyclical vs. constant government expenditure
369(5)
9.4 The heterogeneous agent model
374(27)
9.4.1 The basic setup
374(3)
9.4.2 Solving for market-clearing prices
377(3)
9.4.3 Determining household policy functions
380(5)
9.4.4 Aggregation of individual decisions
385(5)
9.4.5 Model parametrization and simulation
390(4)
9.4.6 The optimum quantity of debt
394(7)
9.5 Further reading
401(1)
9.6 Exercises
401(5)
10 Life-cycle choices and risk
406(99)
10.1 Labour supply, savings, and risky earnings
406(38)
10.1.1 The baseline model
407(15)
10.1.2 The role of variable labour supply
422(7)
10.1.3 Female labour-force participation
429(15)
10.2 Portfolio choice and retirement savings
444(48)
10.2.1 A model with stocks and bonds
444(25)
10.2.2 The choice to buy annuities
469(9)
10.2.3 Retirement savings in tax-favoured savings vehicles
478(14)
10.3 Further reading
492(1)
10.4 Exercises
493(12)
11 Dynamic macro II: The stochastic OLG model
505(56)
11.1 General structure and long-run equilibrium
505(20)
11.1.1 Demographics, behaviour, and markets
506(6)
11.1.2 Numerical implementation of steady-state equilibrium
512(4)
11.1.3 Model parametrization and calibration
516(5)
11.1.4 The initial equilibrium
521(2)
11.1.5 Long-run analysis of policy reforms
523(2)
11.2 Transitional dynamics and welfare analysis
525(14)
11.2.1 Computation of transitional dynamics
525(2)
11.2.2 Generational welfare and aggregate efficiency
527(12)
11.3 Comprehensive analysis of policy reforms
539(17)
11.3.1 The optimal size of the pension system
539(5)
11.3.2 The optimal progressivity of the labour-income tax
544(6)
11.3.3 Should capital income be taxed?
550(6)
11.4 Further reading
556(2)
11.5 Exercises
558(3)
Bibliography 561(6)
Index 567
Hans Fehr is Professor of Economics at the University of Wuerzburg. His previous roles have included Assistant Professor at the University of Tuebingen and Postdoctoral Researcher at Boston University. Professor Fehr's main research interests are in the field of quantitative public economics. His past work has focused on analyzing the economic consequences of population aging and various tax policy and social security reforms by means of computable general equilibrium models with overlapping generations. His research has been published in the European Economic Review the Journal of Economic Dynamics and Control, the Review of Economic Dynamics, and the Scandanavian Journal of Economics.

Fabian Kindermann is Assistant Professor of Economics at the University of Bonn. He was previously a Postdoctoral Researcher at Northwestern University and an Assistant Professor at the University of Wuerzburg. His research interests are in public economics and macroeconomics, where he uses quantitative macroeconomic models to shed light on the determinants of economi inequality, study the implications of inequality for the optimal design of tax and social security systems, and investigate issues in family economics. His work has been published in the European Economic Review, Review of Economic Dynamics, Journal of Economic Dynamics, and Control and Computational Economics.