Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Deep Learning and Neural Networks with Python(TM): A Practical Guide

(Ecole Nationale Superieure d'Informatique et d'Analyse des Systemes, Rabat, Morocco), (Researcher and Assistant Lecturer, Menoufia University, Egypt)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 25-Nov-2020
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780323909341
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 151,21 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 25-Nov-2020
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780323909341
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Introduction to Deep Learning and Neural Networks with Python™: A Practical Guide is an intensive step-by-step guide for neuroscientists to fully understand, practice, and build neural networks. Providing math and Python™ code examples to clarify neural network calculations, by book’s end readers will fully understand how neural networks work starting from the simplest model Y=X and building from scratch. Details and explanations are provided on how a generic gradient descent algorithm works based on mathematical and Python™ examples, teaching you how to use the gradient descent algorithm to manually perform all calculations in both the forward and backward passes of training a neural network.
  • Examines the practical side of deep learning and neural networks
  • Provides a problem-based approach to building artificial neural networks using real data
  • Describes Python™ functions and features for neuroscientists
  • Uses a careful tutorial approach to describe implementation of neural networks in Python™
  • Features math and code examples (via companion website) with helpful instructions for easy implementation
1. Preparing the Development Environment2. Introduction to ANN3. ANN
with 1 Input and 1 Output4. Working with Any Number of Inputs5. Working with
Hidden Layers6. Using Any Number of Hidden Neurons7. ANN with 2 Hidden
Layers8. ANN with 3 Hidden Layers9. Any Number of Hidden Layers10. Generic
ANN11. Speeding Neural Network using Cython and PyPy12. Deploying Neural
Network to Mobile Devices
Dr. Gad is a data neuroscientist who is passionate about artificial intelligence, machine learning, deep learning, computer vision, and Python with over 7 projects in the fields. He is a researcher at both the University of Ottawa, Canada and Menoufia University, Egypt and also serves in a teaching capacity as an Assistant Lecturer. He has contributed to over 80 original articles and additional tutorials in addition to his previous 3 books. He hopes to continue adding value to the neural data science community by sharing his writings, recorded tutorials, and consultation with new trainees in the field. Fatima Ezzahra Jarmouni is an M.Sc. junior data scientist interested in statistics, data science, machine learning, and deep learning. Currently enrolled in a PhD program in machine learning at ENSIAS. She codes with Python and has experience in Python data science libraries including NumPy, Scikit-Learn, TensorFlow, and Keras.