Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Dynamic Meteorology

4.10/5 (82 ratings by Goodreads)
(University of Washington, Seattle, WA, USA), (University of Washington, Seattle, WA, USA)
  • Formāts: EPUB+DRM
  • Sērija : International Geophysics
  • Izdošanas datums: 17-Dec-2012
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780123848673
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 72,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : International Geophysics
  • Izdošanas datums: 17-Dec-2012
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780123848673
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Holton (1938-2004) asked his colleague Hakim (both U. of Washington-Seattle) to join him as coauthor for this edition, then abruptly left him to finish on his own. He has taken the opportunity to introduce some fresh perspectives, taking care to retain the features that have made the text the standard for generations of graduate and undergraduate students in the atmospheric sciences, practitioners in the field, and people in neighboring fields who want an accessible introduction. Dynamic meteorology is the study of air motion in the atmosphere that is associated with weather and climate. Academic Press in an imprint of Elsevier. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)



Recenzijas

"The book is very clearly and well written...the author succeeds in presenting the fundamentals while providing a motivating discussion on the full scope of dynamic meteorology and its applications."-Jorg Matschullat, Interdisciplinary Environmental Research Center, in ENVIRONMENTAL GEOLOGY, VOL. 49, MARCH 2006Praise for previous edition:...reflects the full scope of modern dynamic meteorology, while providing a presentation of the fundamentals.” BULLETIN AMERICAN METEOROLOGICAL SOCIETY The careful presentation of introductory material and clear discussion of dynamical principles make this an excellent basic account of dynamical meteorology.” JOURNAL OF FLUID MECHANICS

Papildus informācija

An Introduction to Dynamic Meteorology is the top-selling textbook that introduces upper undergraduate and graduate-level students to the study of atmospheric behavior and dynamics impacted by weather and climate.
Preface xv
1 Introduction
1.1 Dynamic Meteorology
1(3)
1.2 Conservation of Momentum
4(5)
1.2.1 Pressure Gradient Force
5(1)
1.2.2 Viscous Force
6(2)
1.2.3 Gravitational Force
8(1)
1.3 Noninertial Reference Frames and "Apparent" Forces
9(9)
1.3.1 Centripetal Acceleration and Centrifugal Force
10(1)
1.3.2 Gravity Revisited
11(3)
1.3.3 The Coriolis Force and the Curvature Effect
14(3)
1.3.4 Constant Angular Momentum Oscillations
17(1)
1.4 Structure of the Static Atmosphere
18(5)
1.4.1 The Hydrostatic Equation
18(2)
1.4.2 Pressure as a Vertical Coordinate
20(2)
1.4.3 A Generalized Vertical Coordinate
22(1)
1.5 Kinematics
23(2)
1.6 Scale Analysis
25(6)
Suggested References
26(1)
Problems
26(2)
Matlab Exercises
28(3)
2 Basic Conservation Laws
2.1 Total Differentiation
31(4)
2.1.1 Total Differentiation of a Vector in a Rotating System
33(2)
2.2 The Vectorial Form of the Momentum Equation in Rotating Coordinates
35(2)
2.3 Component Equations in Spherical Coordinates
37(4)
2.4 Scale Analysis of the Equations of Motion
41(4)
2.4.1 Geostrophic Approximation and Geostrophic Wind
42(1)
2.4.2 Approximate Prognostic Equations: The Rossby Number
43(1)
2.4.3 The Hydrostatic Approximation
44(1)
2.5 The Continuity Equation
45(5)
2.5.1 A Eulerian Derivation
46(1)
2.5.2 A Lagrangian Derivation
47(1)
2.5.3 Scale Analysis of the Continuity Equation
48(2)
2.6 The Thermodynamic Energy Equation
50(3)
2.7 Thermodynamics of the Dry Atmosphere
53(4)
2.7.1 Potential Temperature
53(1)
2.7.2 The Adiabatic Lapse Rate
54(1)
2.7.3 Static Stability
54(2)
2.7.4 Scale Analysis of the Thermodynamic Energy Equation
56(1)
2.8 The Boussinesq Approximation
57(1)
2.9 Thermodynamics of the Moist Atmosphere
58(9)
2.9.1 Equivalent Potential Temperature
59(2)
2.9.2 The Pseudoadiabatic Lapse Rate
61(1)
2.9.3 Conditional Instability
62(2)
Suggested References
64(1)
Problems
65(1)
Matlab Exercises
66(1)
3 Elementary Applications of the Basic Equations
3.1 Basic Equations in Isobaric Coordinates
67(2)
3.1.1 The Horizontal Momentum Equation
67(1)
3.1.2 The Continuity Equation
68(1)
3.1.3 The Thermodynamic Energy Equation
69(1)
3.2 Balanced Flow
69(9)
3.2.1 Natural Coordinates
70(1)
3.2.2 Geostrophic Flow
71(1)
3.2.3 Inertial Flow
72(1)
3.2.4 Cyclostrophic Flow
73(1)
3.2.5 The Gradient Wind Approximation
74(4)
3.3 Trajectories and Streamlines
78(3)
3.4 The Thermal Wind
81(3)
3.4.1 Barotropic and Baroclinic Atmospheres
84(1)
3.5 Vertical Motion
84(3)
3.5.1 The Kinematic Method
85(2)
3.5.2 The Adiabatic Method
87(1)
3.6 Surface Pressure Tendency
87(8)
Problems
89(3)
Matlab Exercises
92(3)
4 Circulation, Vorticity, and Potential Vorticity
4.1 The Circulation Theorem
95(5)
4.2 Vorticity
100(4)
4.2.1 Vorticity in Natural Coordinates
102(2)
4.3 The Vorticity Equation
104(6)
4.3.1 Cartesian Coordinate Form
104(2)
4.3.2 The Vorticity Equation in Isobaric Coordinates
106(1)
4.3.3 Scale Analysis of the Vorticity Equation
107(3)
4.4 Potential Vorticity
110(5)
4.5 Shallow Water Equations
115(5)
4.5.1 Barotropic Potential Vorticity
118(2)
4.6 Ertel Potential Vorticity in Isentropic Coordinates
120(7)
4.6.1 Equations of Motion in Isentropic Coordinates
120(1)
4.6.2 The Potential Vorticity Equation
121(1)
4.6.3 Integral Constraints on Isentropic Vorticity
121(1)
Suggested References
122(1)
Problems
122(2)
Matlab Exercises
124(3)
5 Atmospheric Oscillations
5.1 The Perturbation Method
127(1)
5.2 Properties of Waves
128(8)
5.2.1 Fourier Series
130(1)
5.2.2 Dispersion and Group Velocity
131(2)
5.2.3 Wave Properties in Two and Three Dimensions
133(2)
5.2.4 A Wave Solution Strategy
135(1)
5.3 Simple Wave Types
136(8)
5.3.1 Acoustic or Sound Waves
136(3)
5.3.2 Shallow Water Waves
139(5)
5.4 Internal Gravity (Buoyancy) Waves
144(6)
5.4.1 Pure Internal Gravity Waves
145(5)
5.5 Linear Waves of a Rotating Stratified Atmosphere
150(6)
5.5.1 Pure Inertial Oscillations
150(2)
5.5.2 Rossby and Inertia-Gravity Waves
152(4)
5.6 Adjustment to Geostrophic Balance
156(3)
5.7 Rossby Waves
159(12)
5.7.1 Free Barotropic Rossby Waves
161(2)
5.7.2 Forced Topographic Rossby Waves
163(2)
Suggested References
165(1)
Problems
166(2)
Matlab Exercises
168(3)
6 Quasi-geostrophic Analysis
6.1 The Observed Structure of Extratropical Circulations
171(7)
6.2 Derivation of the Quasi-Geostrophic Equations
178(5)
6.2.1 Preliminaries
181(2)
6.3 Potential Vorticity Derivation of the QG Equations
183(4)
6.4 Potential Vorticity Thinking
187(10)
6.4.1 PV Inversion, Induced Flow, and Piecewise PV Inversion
188(6)
6.4.2 PV Conservation and the QG "Height Tendency" Equation
194(3)
6.5 Vertical Motion (w) Thinking
197(7)
6.6 Idealized Model of a Baroclinic Disturbance
204(2)
6.7 Isobaric Form of the QG Equations
206(7)
Suggested References
208(1)
Problems
208(2)
Matlab Exercises
210(3)
7 Baroclinic Development
7.1 Hydrodynamic Instability
213(2)
7.2 Normal Mode Baroclinic Instability: A Two-Layer Model
215(12)
7.2.1 Linear Perturbation Analysis
217(6)
7.2.2 Vertical Motion in Baroclinic Waves
223(4)
7.3 The Energetics of Baroclinic Waves
227(7)
7.3.1 Available Potential Energy
227(2)
7.3.2 Energy Equations for the Two-Layer Model
229(5)
7.4 Baroclinic Instability of a Continuously Stratified Atmosphere
234(11)
7.4.1 Log-Pressure Coordinates
235(2)
7.4.2 Baroclinic Instability: The Rayleigh Theorem
237(4)
7.4.3 The Eady Stability Problem
241(4)
7.5 Growth and Propagation of Neutral Modes
245(11)
7.5.1 Transient Growth of Neutral Waves
247(3)
7.5.2 Downstream Development
250(1)
Suggested References
251(1)
Problems
251(2)
Matlab Exercises
253(3)
8 The Planetary Boundary Layer
8.1 Atmospheric Turbulence
256(3)
8.1.1 Reynolds Averaging
256(3)
8.2 Turbulent Kinetic Energy
259(2)
8.3 Planetary Boundary Layer Momentum Equations
261(9)
8.3.1 Well-Mixed Boundary Layer
262(2)
8.3.2 The Flux-Gradient Theory
264(1)
8.3.3 The Mixing Length Hypothesis
264(2)
8.3.4 The Ekman Layer
266(2)
8.3.5 The Surface Layer
268(1)
8.3.6 The Modified Ekman Layer
269(1)
8.4 Secondary Circulations and Spin Down
270(9)
Suggested References
275(1)
Problems
275(1)
Matlab Exercises
276(3)
9 Mesoscale Circulations
9.1 Energy Sources for Mesoscale Circulations
279(1)
9.2 Fronts and Frontogenesis
280(10)
9.2.1 The Kinematics of Frontogenesis
281(4)
9.2.2 Semigeostrophic Theory
285(2)
9.2.3 Cross-Frontal Circulation
287(3)
9.3 Symmetric Baroclinic Instability
290(4)
9.4 Mountain Waves
294(8)
9.4.1 Waves over Sinusoidal Topography
294(3)
9.4.2 Flow over Isolated Ridges
297(1)
9.4.3 Lee Waves
298(1)
9.4.4 Downslope Windstorms
299(3)
9.5 Cumulus Convection
302(4)
9.5.1 Convective Available Potential Energy
302(1)
9.5.2 Entrainment
303(3)
9.6 Convective Storms
306(6)
9.6.1 Development of Rotation in Supercell Thunderstorms
306(4)
9.6.2 The Right-Moving Storm
310(2)
9.7 Hurricanes
312(14)
9.7.1 Dynamics of Mature Hurricanes
314(4)
9.7.2 Hurricane Development
318(3)
Suggested References
321(1)
Problems
321(1)
Matlab Exercises
322(4)
10 The General Circulation
10.1 The Nature of the Problem
326(2)
10.2 The Zonally Averaged Circulation
328(13)
10.2.1 The Conventional Eulerian Mean
330(7)
10.2.2 The Transformed Eulerian Mean
337(3)
10.2.3 The Zonal-Mean Potential Vorticity Equation
340(1)
10.3 The Angular Momentum Budget
341(8)
10.3.1 Sigma Coordinates
343(2)
10.3.2 The Zonal-Mean Angular Momentum
345(4)
10.4 The Lorenz Energy Cycle
349(7)
10.5 Longitudinally Dependent Time-Averaged Flow
356(5)
10.5.1 Stationary Rossby Waves
356(3)
10.5.2 Jet Stream and Storm Tracks
359(2)
10.6 Low-Frequency Variability
361(6)
10.6.1 Climate Regimes
362(2)
10.6.2 Annular Modes
364(1)
10.6.3 Sea Surface Temperature Anomalies
364(3)
10.7 Numerical Simulation of the General Circulation
367(3)
10.7.1 Dynamical Formulation
368(1)
10.7.2 Physical Processes and Parameterizations
369(1)
10.8 Climate Sensitivity, Feedbacks, and Uncertainty
370(8)
Suggested References
373(1)
Problems
374(1)
Matlab Exercises
375(3)
11 Tropical Dynamics
11.1 The Observed Structure of Large-Scale Tropical Circulations
378(14)
11.1.1 The Intertropical Convergence Zone
378(3)
11.1.2 Equatorial Wave Disturbances
381(3)
11.1.3 African Wave Disturbances
384(2)
11.1.4 Tropical Monsoons
386(3)
11.1.5 The Walker Circulation
389(1)
11.1.6 El Nino and the Southern Oscillation
390(2)
11.1.7 Equatorial Intraseasonal Oscillation
392(1)
11.2 Scale Analysis of Large-Scale Tropical Motions
392(6)
11.3 Condensation Heating
398(3)
11.4 Equatorial Wave Theory
401(5)
11.4.1 Equatorial Rossby and Rossby-Gravity Modes
401(3)
11.4.2 Equatorial Kelvin Waves
404(2)
11.5 Steady Forced Equatorial Motions
406(7)
Suggested References
409(1)
Problems
409(1)
Matlab Exercises
410(3)
12 Middle Atmosphere Dynamics
12.1 Structure and Circulation of the Middle Atmosphere
413(4)
12.2 The Zonal-Mean Circulation of the Middle Atmosphere
417(9)
12.2.1 Lagrangian Motion of Air Parcels
418(2)
12.2.2 The Transformed Eulerian Mean
420(4)
12.2.3 Zonal-Mean Transport
424(2)
12.3 Vertically Propagating Planetary Waves
426(4)
12.3.1 Linear Rossby Waves
426(2)
12.3.2 Rossby Wavebreaking
428(2)
12.4 Sudden Stratospheric Warmings
430(5)
12.5 Waves in the Equatorial Stratosphere
435(5)
12.5.1 Vertically Propagating Kelvin Waves
436(1)
12.5.2 Vertically Propagating Rossby-Gravity Waves
437(1)
12.5.3 Observed Equatorial Waves
438(2)
12.6 The Quasi-Biennial Oscillation
440(6)
12.7 Trace Constituent Transport
446(7)
12.7.1 Dynamical Tracers
446(1)
12.7.2 Chemical Tracers
447(1)
12.7.3 Transport in the Stratosphere
448(2)
Suggested References
450(1)
Problems
450(2)
Matlab Exercises
452(1)
13 Numerical Modeling and Prediction
13.1 Historical Background
453(2)
13.2 Numerical Approximation of the Equations of Motion
455(9)
13.2.1 Finite Differences
455(2)
13.2.2 Centered Differences: Explicit Time Differencing
457(1)
13.2.3 Computational Stability
458(2)
13.2.4 Implicit Time Differencing
460(2)
13.2.5 The Semi-Lagrangian Integration Method
462(1)
13.2.6 Truncation Error
463(1)
13.3 The Barotropic Vorticity Equation in Finite Differences
464(3)
13.4 The Spectral Method
467(5)
13.4.1 The Barotropic Vorticity Equation in Spherical Coordinates
468(2)
13.4.2 Rossby-Haurwitz Waves
470(1)
13.4.3 The Spectral Transform Method
471(1)
13.5 Primitive Equation Models
472(3)
13.5.1 Spectral Models
473(1)
13.5.2 Physical Parameterizations
474(1)
13.6 Data Assimilation
475(6)
13.6.1 Data Assimilation for a Single Variable
476(3)
13.6.2 Data Assimilation for Many Variables
479(2)
13.7 Predictability and Ensemble Forecasting
481(10)
Suggested References
486(1)
Problems
487(1)
Matlab Exercises
488(3)
Appendices
A Useful Constants and Parameters
491(2)
B List of Symbols
493(6)
C Vector Analysis
C.1 Vector Identities
499(1)
C.2 Integral Theorems
499(1)
C.3 Vector Operations in Various Coordinate Systems
500(3)
D Moisture Variables
D.1 Equivalent Potential Temperature
503(1)
D.2 Pseudoadiabatic Lapse Rate
504(3)
E Standard Atmosphere Data
507(2)
F Symmetric Baroclinic Oscillations
509(2)
G Conditional Probability and Likelihood
511(2)
Bibliography 513(6)
Index 519
James R. Holton was Professor of Atmospheric Sciences at the University of Washington until his death in 2004. A member of the National Academies of Science, during his career he was awarded every major honor available in the atmospheric sciences including AGUs Revelle Medal. Gregory J. Hakim is Professor and Chair of the Department of Atmospheric Sciences in the College of the Environment at the University of Washington. His research focuses on problems in climate reconstruction, predictability, data assimilation, atmospheric dynamics, and synoptic meteorology. He teaches courses in weather, atmospheric sciences, atmospheric structure and analysis, atmospheric motions, synoptic meteorology, balance dynamics, and weather predictability and data assimilation.