Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Econophysics: Correlations and Complexity in Finance

(Universitą degli Studi, Palermo, Italy), (Boston University)
  • Formāts: PDF+DRM
  • Izdošanas datums: 13-Nov-1999
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9780511035029
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 49,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 13-Nov-1999
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9780511035029
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Mantegna (physics, U. of Palermo) and Stanley (physics, Massachusetts Institute of Technology and Boston U.) draw on concepts from statistical physics to describe financial systems. Specifically they illustrate the scaling concepts used in probability theory, in critical phenomena, and in fully developed turbulent fluids, and apply them to financial time series to gain insight into the behavior of financial markets. They also present a new stochastic model that displays several of the statistical properties observed in empirical data. Annotation c. Book News, Inc., Portland, OR (booknews.com)

First ever book on econophysics, which explores the applications of ideas from physics to financial and economic systems.

Statistical physics concepts such as stochastic dynamics, short- and long-range correlations, self-similarity and scaling, permit an understanding of the global behavior of economic systems without first having to work out a detailed microscopic description of the system. This pioneering text explores the use of these concepts in the description of financial systems, the dynamic new specialty of econophysics. The authors illustrate the scaling concepts used in probability theory, critical phenomena, and fully-developed turbulent fluids and apply them to financial time series. They also present a new stochastic model that displays several of the statistical properties observed in empirical data. Physicists will find the application of statistical physics concepts to economic systems fascinating. Economists and other financial professionals will benefit from the book's empirical analysis methods and well-formulated theoretical tools that will allow them to describe systems composed of a huge number of interacting subsystems.

Recenzijas

' they have been remarkably successful in presenting a clear and concise introductory summary of a large body of work on the statistical properties of stock prices.' Burton Malkiel, Journal of Economic Literature 'Clearly and concisely written, this book provides an excellent introduction to the problem of understanding the empirical statistical properties of prices.' Doyne Farmer, Prediction Company, Santa Fe and the Santa Fe Institute 'I feel the book is a useful introduction to the empirical aspects of econophysics.' Blake LeBaron, Nature 'The authors are leading researchers in the field, and were well-regarded statistical physicists before that the book seems aimed the other way, at physicists interested in economics, and for them it would make a good introduction to finance. The writing is clear and friendly, the production values high and the guides to further reading excellent. They will find it well worth their time and money.' Cosma Shalizi, Institute of Physics

Papildus informācija

This book on econophysics explores the applications of ideas from physics to financial and economic systems.
Preface viii
Introduction
1(7)
Motivation
1(1)
Pioneering approaches
2(2)
The chaos approach
4(1)
The present focus
5(3)
Efficient market hypothesis
8(6)
Concepts, paradigms, and variables
8(1)
Arbitrage
8(1)
Efficient market hypothesis
9(2)
Algorithmic complexity theory
11(1)
Amount of information in a financial time series
12(1)
Idealized systems in physics and finance
12(2)
Random walk
14(9)
One-dimensional discrete case
14(1)
The continuous limit
15(2)
Central limit theorem
17(2)
The speed of convergence
19(2)
Berry--Esseen Theorem 1
20(1)
Berry--Esseen Theorem 2
20(1)
Basin of attraction
21(2)
Levy stochastic processes and limit theorems
23(11)
Stable distributions
23(3)
Scaling and self-similarity
26(1)
Limit theorem for stable distributions
27(1)
Power-law distributions
28(1)
The St Petersburg paradox
28(1)
Power laws in finite systems
29(1)
Price change statistics
29(2)
Infinitely divisible random processes
31(2)
Stable processes
31(1)
Poisson process
31(1)
Gamma distributed random variables
32(1)
Uniformly distributed random variables
32(1)
Summary
33(1)
Scales in financial data
34(10)
Price scales in financial markets
35(4)
Time scales in financial markets
39(4)
Summary
43(1)
Stationarity and time correlation
44(9)
Stationary stochastic processes
44(1)
Correlation
45(4)
Short-range correlated random processes
49(1)
Long-range correlated random processes
49(2)
Short-range compared with long-range correlated noise
51(2)
Time correlation in financial time series
53(7)
Autocorrelation function and spectral density
53(4)
Higher-order correlations: The volatility
57(1)
Stationarity of price changes
58(1)
Summary
59(1)
Stochastic models of price dynamics
60(8)
Levy stable non-Gaussian model
61(1)
Student's t-distribution
62(1)
Mixture of Gaussian distributions
63(1)
Truncated Levy flight
64(4)
Scaling and its breakdown
68(8)
Empirical analysis of the S&P 500 index
68(4)
Comparison with the TLF distribution
72(2)
Statistical properties of rare events
74(2)
ARCH and GARCH processes
76(12)
ARCH processes
77(3)
GARCH processes
80(1)
Statistical properties of ARCH/GARCH processes
81(4)
The GARCH (1,1) and empirical observations
85(2)
Summary
87(1)
Financial markets and turbulence
88(10)
Turbulence
89(1)
Parallel analysis of price dynamics and fluid velocity
90(4)
Scaling in turbulence and in financial markets
94(2)
Discussion
96(2)
Correlation and anticorrelation between stocks
98(7)
Simultaneous dynamics of pairs of stocks
98(5)
Dow--Jones Industrial Average portfolio
99(2)
S&P 500 portfolio
101(2)
Statistical properties of correlation matrices
103(1)
Discussion
103(2)
Taxonomy of a stock portfolio
105(8)
Distance between stocks
105(1)
Ultrametric spaces
106(5)
Subdominant ultrametric space of a portfolio of stocks
111(1)
Summary
112(1)
Options in idealized markets
113(10)
Forward contracts
113(1)
Futures
114(1)
Options
114(1)
Speculating and hedging
115(3)
Speculation: An example
116(1)
Hedging: A form of insurance
116(1)
Hedging: The concept of a riskless portfolio
116(2)
Option pricing in idealized markets
118(2)
The Black & Scholes formula
120(1)
The complex structure of financial markets
121(1)
Another option-pricing approach
121(1)
Discussion
122(1)
Options in real markets
123(7)
Discontinuous stock returns
123(1)
Volatility in real markets
124(3)
Historical volatility
124(1)
Implied volatility
125(2)
Hedging in real markets
127(1)
Extension of the Black & Scholes model
127(1)
Summary
128(2)
Appendix A: Notation guide 130(6)
Appendix B: Martingales 136(1)
References 137(8)
Index 145