Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Engineering Electromagnetics

  • Formāts: PDF+DRM
  • Izdošanas datums: 26-Mar-2013
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642361180
  • Formāts - PDF+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 26-Mar-2013
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642361180

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This text provides students with the missing link that can help them master the basic principles of electromagnetics. The concept of vector fields is introduced by starting with clear definitions of position, distance, and base vectors. The symmetries of typical configurations are discussed in detail, including cylindrical, spherical, translational, and two-fold rotational symmetries. To avoid serious confusion between symbols with two indices, the text adopts a new notation: a letter with subscript 1-2 for the work done in moving a unit charge from point 2 to point 1, in which the subscript 1-2 mimics the difference in potentials, while the hyphen implies a sense of backward direction, from 2 to 1. This text includes 300 figures in which real data are drawn to scale. Many figures provide a three-dimensional view. Each subsection includes a number of examples that are solved by examining rigorous approaches in steps. Each subsection ends with straightforward exercises and answers through which students can check if they correctly understood the concepts. A total 350 of examples and exercises are provided. At the end of each section, review questions are inserted to point out key concepts and relations discussed in the section. They are given with hints referring to the related equations and figures. The book contains a total of 280 end-of-chapter problems.



This book introduces important concepts in electromagnetics, beginning with clear definitions of position, distance and base vectors. Includes 300 figures, many in 3-D, using real-world data, along with 350 examples and exercises and 280 chapter-end problems.
1 Vector Algebra and Coordinate Systems
1(60)
1.1 Vectors and Vector Field
2(2)
1.2 Vector Algebra
4(12)
1.2.1 Vector Addition and Subtraction
4(2)
1.2.2 Vector Scaling
6(1)
1.2.3 Scalar or Dot Product
7(4)
1.2.4 Vector or Cross Product
11(3)
1.2.5 Scalar and Vector Triple Products
14(2)
1.3 Orthogonal Coordinate Systems
16(29)
1.3.1 Cartesian Coordinate System
17(10)
1.3.2 Cylindrical Coordinate System
27(9)
1.3.3 Spherical Coordinate System
36(9)
1.4 Coordinate Transformation
45(16)
1.4.1 Cartesian-Cartesian Transformation
45(3)
1.4.2 Cylindrical-Cartesian Transformation
48(2)
1.4.3 Spherical-Cartesian Transformation
50(11)
2 Vector Calculus
61(56)
2.1 Line and Surface Integrals
62(12)
2.1.1 Curves
62(3)
2.1.2 Line Integral
65(6)
2.1.3 Surface Integral
71(3)
2.2 Directional Derivative and Gradient
74(8)
2.3 Flux and Flux Density
82(2)
2.4 Divergence and Divergence Theorem
84(10)
2.4.1 Divergence of a Flux Density
85(4)
2.4.2 Divergence Theorem
89(5)
2.5 Curl and Stokes's Theorem
94(10)
2.5.1 Curl of a Vector Field
94(7)
2.5.2 Stokes's Theorem
101(3)
2.6 Dual Operations of Δ
104(3)
2.7 Helmholtz's Theorem
107(10)
3 Electrostatics
117(94)
3.1 Coulomb's Law
118(4)
3.2 Electric Field Intensity
122(11)
3.2.1 Electric Field due to Discrete Charges
123(3)
3.2.2 Electric Field due to a Continuous Charge Distribution
126(7)
3.3 Electric Flux Density and Gauss's Law
133(11)
3.3.1 Electric Flux Density
133(3)
3.3.2 Gauss's Law
136(8)
3.4 Electric Potential
144(12)
3.4.1 Work Done in Moving a Charge
144(1)
3.4.2 Electric Potential due to a Charge Distribution
145(5)
3.4.3 Conservative Field
150(2)
3.4.4 E as the Negative Gradient of V
152(4)
3.5 Dielectric in a Static Electric Field
156(12)
3.5.1 Electric Polarization
157(3)
3.5.2 Dielectric Constant
160(4)
3.5.3 Boundary Conditions at a Dielectric Interface
164(4)
3.6 Perfect Conductor in a Static Electric Field
168(4)
3.7 Electrostatic Potential Energy
172(4)
3.8 Electrostatic Boundary Value Problems
176(15)
3.8.1 Poisson's and Laplace's Equations
176(2)
3.8.2 Uniqueness Theorem
178(2)
3.8.3 Examples of Boundary Values Problems
180(5)
3.8.4 Method of Images
185(6)
3.9 Capacitance and Capacitors
191(20)
3.9.1 Parallel-Plate Capacitor
193(1)
3.9.2 Examples of Capacitors
194(17)
4 Steady Electric Current
211(26)
4.1 Convection Current
212(3)
4.2 Conduction Current and Ohm's Law
215(3)
4.3 Resistance
218(3)
4.4 Equation of Continuity
221(4)
4.4.1 Relaxation Time Constant
223(2)
4.5 Power Dissipation and Joules's Law
225(2)
4.6 Steady Currents at an Interface
227(3)
4.7 Analogy between D and J
230(7)
5 Magnetostatics
237(88)
5.1 Lorentz Force Equation
238(2)
5.2 The Biot-Savart Law
240(7)
5.3 Ampere's Circuital Law
247(6)
5.4 Magnetic Flux Density
253(4)
5.5 Vector Magnetic Potential
257(8)
5.5.1 Ampere's Circuital Law from the Biot-Savart Law
259(6)
5.6 The Magnetic Dipole
265(4)
5.7 Magnetic Materials
269(19)
5.7.1 Magnetization and Equivalent Current Densities
270(4)
5.7.2 Permeability
274(7)
5.7.3 Hysteresis of a Ferromagnetic Material
281(3)
5.7.4 Magnetic Boundary Conditions
284(4)
5.8 Inductance and Inductors
288(9)
5.9 Magnetic Energy
297(8)
5.9.1 Magnetic Energy in an Inductor
298(2)
5.9.2 Magnetic Energy in Terms of Magnetic Field
300(5)
5.10 Magnetic Force and Torque
305(20)
5.10.1 Magnetic Force on a Current-Carrying Conductor
305(2)
5.10.2 Magnetic Force Involved in a Virtual Work
307(2)
5.10.3 Magnetic Torque
309(16)
6 Time-Varying Fields and Maxwell's Equations
325(32)
6.1 Faraday's Law
326(13)
6.1.1 Transformer emf
328(4)
6.1.2 Motional emf
332(4)
6.1.3 A Loop Moving in a Time-Varying Magnetic Field
336(3)
6.2 Displacement Current Density
339(3)
6.3 Maxwell's Equations
342(6)
6.3.1 Maxwell's Equations in Integral Form
344(1)
6.3.2 Electromagnetic Boundary Conditions
345(3)
6.4 Retarded Potentials
348(9)
7 Wave Motion
357(28)
7.1 One-Dimensional Waves
357(13)
7.1.1 Harmonic Waves
361(3)
7.1.2 Complex Form of a Harmonic Wave
364(6)
7.2 Plane Waves in Three-Dimensional Space
370(5)
7.3 Electromagnetic Plane Waves
375(10)
7.3.1 Transverse Electromagnetic Waves
378(7)
8 Time-Harmonic Electromagnetic Waves
385(78)
8.1 Phasors
385(5)
8.1.1 Maxwell's Equations in Phasor Form
388(2)
8.2 Waves in Homogenous Media
390(30)
8.2.1 Uniform Plane Wave in a Lossless Dielectric
390(5)
8.2.2 Poynting Vector and Power Flow
395(4)
8.2.3 Polarization of a Uniform Plane Wave
399(1)
8.2.3.1 Linearly Polarized Wave
399(2)
8.2.3.2 Circularly Polarized Wave
401(2)
8.2.3.3 Elliptically Polarized Wave
403(3)
8.2.4 Uniform Plane Wave in a Lossy Medium
406(1)
8.2.4.1 Lossy Dielectric with a Damping Force
407(3)
8.2.4.2 Lossy Dielectric of a Low Conductivity
410(4)
8.2.4.3 Good Conductors
414(6)
8.3 Plane Waves at an Interface
420(32)
8.3.1 Normal Incidence of a Plane Wave
420(3)
8.3.1.1 Standing Wave Ratio
423(5)
8.3.1.2 Interface Involving a Perfect Conductor
428(4)
8.3.2 Oblique Incidence of a Plane Wave
432(4)
8.3.2.1 Perpendicular Polarization
436(3)
8.3.2.2 Parallel Polarization
439(5)
8.3.2.3 Brewster Angle
444(3)
8.3.3 Total Internal Reflection
447(2)
8.3.4 Reflectance and Transmittance
449(3)
8.4 Waves in Dispersive Media
452(11)
9 Transmission Lines
463(50)
9.1 Transmission Line Equations
465(4)
9.1.1 Phasor Form of Transmission Line Equations
467(1)
9.1.2 Relationship between Parameters
468(1)
9.2 Transmission Line Parameters
469(4)
9.2.1 Coaxial Transmission Lines
470(1)
9.2.2 Two-Wire Transmission Lines
471(1)
9.2.3 Parallel-Plate Transmission Lines
472(1)
9.3 Infinite Transmission Lines
473(7)
9.3.1 Lossless Transmission Lines
475(1)
9.3.2 Distortionless Transmission Lines
476(2)
9.3.3 Power Transmission and Power Loss
478(2)
9.4 Finite Transmission Lines
480(13)
9.4.1 Input Impedance
481(3)
9.4.2 Reflection Coefficient and Standing Wave Ratio
484(6)
9.4.3 Short-Circuited and Open-Circuited Lines
490(1)
9.4.3.1 Short-Circuited Line (ZL = 0)
491(1)
9.4.3.2 Open-Circuited Line (ZL = ∞)
491(2)
9.5 The Smith Chart
493(20)
9.5.1 Relationship between Γ and ZL
494(2)
9.5.2 Relationship between Γ and Zin
496(3)
9.5.3 Relationship between Γ and Standing Wave Ratio
499(2)
9.5.4 Admittances on the Smith Chart
501(4)
9.5.5 Impedance Matching with a Single-Stub
505(8)
10 Waveguides
513(44)
10.1 Parallel-Plate Waveguides
514(10)
10.1.1 Transverse Electromagnetic(TEM) Waves
514(1)
10.1.2 Transverse Electric(TE) Waves
515(5)
10.1.3 Transverse Magnetic(TM) Waves
520(4)
10.2 Rectangular Waveguides
524(33)
10.2.1 Transverse Magnetic(TM) Modes
527(1)
10.2.1.1 Longitudinal Field Component of a TM Mode
528(4)
10.2.1.2 Transverse Field Components of a TM Mode
532(3)
10.2.1.3 Orthonormal Set in TM Modes
535(4)
10.2.2 Transverse Electric(TE) Modes
539(4)
10.2.2.1 Orthonormal Set in TE Modes
543(5)
10.2.3 Power Attenuation
548(9)
Appendix: Material Constants 557(2)
Subject Index 559