Atjaunināt sīkdatņu piekrišanu

Introduction to Global Variational Geometry, Volume 18 [Hardback]

(Palacky University, Department of Algebra and Geometry, Olomouc, Czech Republic)
  • Formāts: Hardback, 500 pages, height x width: 230x150 mm, 11ill.
  • Sērija : North-Holland Mathematical Library
  • Izdošanas datums: 01-Apr-2000
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • ISBN-10: 0720407109
  • ISBN-13: 9780720407105
Citas grāmatas par šo tēmu:
  • Formāts: Hardback, 500 pages, height x width: 230x150 mm, 11ill.
  • Sērija : North-Holland Mathematical Library
  • Izdošanas datums: 01-Apr-2000
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • ISBN-10: 0720407109
  • ISBN-13: 9780720407105
Citas grāmatas par šo tēmu:
This book provides a comprehensive introduction to modern global variational theory on fibred spaces. It is based on differentiation and integration theory of differential forms on smooth manifolds, and on the concepts of global analysis and geometry such as jet prolongations of manifolds, mappings, and Lie groups. The book will be invaluable for researchers and PhD students in differential geometry, global analysis, differential equations on manifolds, and mathematical physics, and for the readers who wish to undertake further rigorous study in this broad interdisciplinary field. Featured topics- Analysis on manifolds- Differential forms on jet spaces - Global variational functionals- Euler-Lagrange mapping - Helmholtz form and the inverse problem- Symmetries and the Noethers theory of conservation laws- Regularity and the Hamilton theory- Variational sequences - Differential invariants and natural variational principles
Tentative Table of Contents:PrefaceList of Standard SymbolsChapter 1:
Smooth ManifoldsChapter 2: Analysis on ManifoldsChapter 3: Lie Transformation
GroupsChapter 4: Lagrange StructuresChapter 5: Elementary Sheaf TheoryChapter
6: Variational Sequences on Fibered ManifoldsChapter 7: Invariant Variational
Functionals on Principal BundlesChapter 8: Differential Invariants
Chapter 9:
Natural Variational Principles AppendicesBibliographyIndex