Atjaunināt sīkdatņu piekrišanu

Introduction to Humanoid Robotics Softcover reprint of the original 1st ed. 2014 [Mīkstie vāki]

  • Formāts: Paperback / softback, 222 pages, height x width: 235x155 mm, weight: 3635 g, 113 Illustrations, color; 79 Illustrations, black and white; XIV, 222 p. 192 illus., 113 illus. in color., 1 Paperback / softback
  • Sērija : Springer Tracts in Advanced Robotics 101
  • Izdošanas datums: 17-Sep-2016
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 366250166X
  • ISBN-13: 9783662501665
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 222 pages, height x width: 235x155 mm, weight: 3635 g, 113 Illustrations, color; 79 Illustrations, black and white; XIV, 222 p. 192 illus., 113 illus. in color., 1 Paperback / softback
  • Sērija : Springer Tracts in Advanced Robotics 101
  • Izdošanas datums: 17-Sep-2016
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 366250166X
  • ISBN-13: 9783662501665
Citas grāmatas par šo tēmu:
This book is for researchers, engineers, and students who are willing to understand how humanoid robots move and be controlled. The book starts with an overview of the humanoid robotics research history and state of the art. Then it explains the required mathematics and physics such as kinematics of multi-body system, Zero-Moment Point (ZMP) and its relationship with body motion. Biped walking control is discussed in depth, since it is one of the main interests of humanoid robotics. Various topics of the whole body motion generation are also discussed. Finally multi-body dynamics is presented to simulate the complete dynamic behavior of a humanoid robot. Throughout the book, Matlab codes are shown to test the algorithms and to help the reader s understanding.

Kinematics.- Zero-Moment-Point and Dynamics.- Biped walking.- Generation of Whole Body Motion Patterns.- Dynamic simulation.

From the book reviews:"I very much enjoyed reading this very understandable book, and it is very suitable for students and researchers wishing to complement their studies with other aspects of humanoid robotics ... . It can also be read on its own as a continuation of a course on mathematical mechanics." (Arturo Ortiz-Tapia, Computing Reviews, December, 2014)

Recenzijas

From the book reviews:

I very much enjoyed reading this very understandable book, and it is very suitable for students and researchers wishing to complement their studies with other aspects of humanoid robotics . It can also be read on its own as a continuation of a course on mathematical mechanics. (Arturo Ortiz-Tapia, Computing Reviews, December, 2014)

1 Introduction
1(18)
2 Kinematics
19(50)
2.1 Coordinate Transformations
19(6)
2.1.1 World Coordinates
19(1)
2.1.2 Local Coordinates and Homogeneous Transformations
20(3)
2.1.3 Local Coordinate Systems Local to Local Coordinate Systems
23(2)
2.1.4 Homogeneous Transformations and Chain Rules
25(1)
2.2 Characteristics of Rotational Motion
25(11)
2.2.1 Roll, Pitch and Yaw Notation
26(1)
2.2.2 The Meaning of Rotation Matrices
27(1)
2.2.3 Calculating the Inverse of a Rotation Matrix
28(1)
2.2.4 Angular Velocity Vector
29(3)
2.2.5 Differentiation of the Rotation Matrix and Angular Velocity Vectors
32(2)
2.2.6 Integration of the Angular Velocity Vector and Matrix Exponential
34(1)
2.2.7 Matrix Logarithm
35(1)
2.3 Velocity in Three Dimensional Space
36(4)
2.3.1 The Linear and Angular Velocity of a Single Object
36(2)
2.3.2 The Linear and Angular Velocity of Two Objects
38(2)
2.4 Robot Data Structure and Programming
40(5)
2.4.1 Data Structure
40(2)
2.4.2 Programming with Recursions
42(3)
2.5 Kinematics of a Humanoid Robot
45(24)
2.5.1 Creating the Model
45(2)
2.5.2 Forward Kinematics: Calculating the Position of the Links from Joint Angles
47(2)
2.5.3 Inverse Kinematics: Calculating the Joint Angles from a Link's Position and Attitude
49(4)
2.5.4 Numerical Solution to Inverse Kinematics
53(4)
2.5.5 Jacobian
57(2)
2.5.6 Jacobian and the Joint Velocity
59(3)
2.5.7 Singular Postures
62(1)
2.5.8 Inverse Kinematics with Singularity Robustness
63(2)
2.5.9 Appendix: Supplementary Functions
65(4)
3 ZMP and Dynamics
69(36)
3.1 ZMP and Ground Reaction Forces
69(8)
3.1.1 ZMP Overview
69(2)
3.1.2 2D Analysis
71(2)
3.1.3 3D Analysis
73(4)
3.2 Measurement of ZMP
77(6)
3.2.1 General Discussion
77(2)
3.2.2 ZMP of Each Foot
79(3)
3.2.3 ZMP for Both Feet Contact
82(1)
3.3 Dynamics of Humanoid Robots
83(12)
3.3.1 Humanoid Robot Motion and Ground Reaction Force
83(2)
3.3.2 Momentum
85(2)
3.3.3 Angular Momentum
87(2)
3.3.4 Angular Momentum and Inertia Tensor of Rigid Body
89(3)
3.3.5 Calculation of Robot's Center of Mass
92(1)
3.3.6 Calculation of Link Speed and Angular Velocity
93(1)
3.3.7 Calculation of Robot's Momentum
94(1)
3.3.8 Calculation of Robot's Angular Momentum
94(1)
3.4 Calculation of ZMP from Robot's Motion
95(3)
3.4.1 Derivation of ZMP
95(2)
3.4.2 Calculation of ZMP Using Approximation
97(1)
3.5 Some Notes for ZMP
98(4)
3.5.1 Two Explanations
98(1)
3.5.2 Does ZMP Exist Outside the Support Polygon due to the Acceleration of the Center of Mass?
98(3)
3.5.3 Limitation of ZMP
101(1)
3.6 Appendix: Convex Set and Convex Hull
102(3)
4 Biped Walking
105(54)
4.1 How to Realize Biped Walking?
105(2)
4.2 Two Dimensional Walking Pattern Generation
107(13)
4.2.1 Two Dimensional Inverted Pendulum
107(1)
4.2.2 Behavior of Linear Inverted Pendulum
108(4)
4.2.3 Orbital Energy
112(1)
4.2.4 Support Leg Exchange
113(2)
4.2.5 Planning a Simple Biped Gait
115(1)
4.2.6 Extension to a Walk on Uneven Terrain
116(4)
4.3 3D Walking Pattern Generation
120(18)
4.3.1 3D Linear Inverted Pendulum
120(2)
4.3.2 Natures of the 3D Linear Inverted Pendulum
122(4)
4.3.3 3D Walking Pattern Generation
126(7)
4.3.4 Introducing Double Support Phase
133(2)
4.3.5 From Linear Inverted Pendulum to Multi-body Model
135(2)
4.3.6 Implementation Example
137(1)
4.4 ZMP Based Walking Pattern Generation
138(11)
4.4.1 Cart-Table Model
138(2)
4.4.2 Off-Line Walking Pattern Generation
140(2)
4.4.3 On-Line Walking Pattern Generation
142(5)
4.4.4 Dynamics Filter Based on Preview Control
147(2)
4.4.5 Advanced Pattern Generators
149(1)
4.5 Stabilizer
149(6)
4.5.1 Principles of Stabilizing Control
150(4)
4.5.2 Stabilizing Control of Honda Humanoid Robot
154(1)
4.5.3 Advanced Stabilizers
155(1)
4.6 Pioneers of Dynamic Biped Walking Technology
155(1)
4.7 Additional Methods for Biped Control
156(3)
4.7.1 Passive Dynamic Walk
157(1)
4.7.2 Nonlinear Oscillator and Central Pattern Generators
158(1)
4.7.3 Learning and Evolutionary Computing
158(1)
5 Generation of Whole Body Motion Patterns
159(24)
5.1 How to Generate Whole Body Motion
159(1)
5.2 Generating Rough Whole Body Motion
160(5)
5.2.1 Using Motion Capture
162(1)
5.2.2 Using a Graphical User Interface
163(1)
5.2.3 Using High Speed Multivariate Search Methods
164(1)
5.3 Converting Whole Body Motion Patterns to Dynamically Stable Motion
165(4)
5.3.1 Dynamics Filter
165(1)
5.3.2 Auto Balancer
166(1)
5.3.3 Strict Trunk Motion Computation Algorithm
167(2)
5.4 Remote Operation of Humanoid Robots with Whole Body Motion Generation
169(8)
5.4.1 Remote Generation of Whole Body Motion Using the Operation Point Switching Method
170(2)
5.4.2 Full Body Motion Generation of Stable Motion Using Split Momentum Control
172(2)
5.4.3 Application and Experiments with the Humanoid Robot HRP-2
174(3)
5.5 Reducing the Impact of a Humanoid Robot Falling Backwards
177(3)
5.6 Making a Humanoid Robot Get Up Again
180(3)
6 Dynamic Simulation
183(28)
6.1 Dynamics of Rotating Rigid Body
184(2)
6.1.1 Euler's Equation of Motion
184(1)
6.1.2 Simulation of Rigid Body Rotation
185(1)
6.2 Spatial Velocity
186(3)
6.2.1 Speed of Rigid Body
186(2)
6.2.2 Integration of Spatial Velocity
188(1)
6.3 Dynamics of Rigid Body
189(7)
6.3.1 Newton-Euler Equations
189(2)
6.3.2 Dynamics by Spatial Velocity
191(1)
6.3.3 Rigid Body Simulation Based on Spatial Velocity
192(1)
6.3.4 Simulation of a Spinning Top
193(3)
6.4 Dynamics of Link System
196(9)
6.4.1 Forward Kinematics with Acceleration
196(1)
6.4.2 Inverse Dynamics of Link System
197(3)
6.4.3 Forward Dynamics of Link System
200(3)
6.4.4 Featherstone's Method
203(2)
6.5 Background Material for This Section
205(1)
6.6 Appendix
206(5)
6.6.1 Treatment of Force and Moment
206(1)
6.6.2 Subroutines
207(4)
References 211(10)
Index 221