Atjaunināt sīkdatņu piekrišanu

Introduction To Hydraulics Of Fine Sediment Transport, An [Hardback]

(Univ Of Florida, Usa)
  • Formāts: Hardback, 1060 pages
  • Sērija : Advanced Series On Ocean Engineering 38
  • Izdošanas datums: 20-Nov-2013
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9814449482
  • ISBN-13: 9789814449489
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 162,65 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 1060 pages
  • Sērija : Advanced Series On Ocean Engineering 38
  • Izdošanas datums: 20-Nov-2013
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9814449482
  • ISBN-13: 9789814449489
Citas grāmatas par šo tēmu:
This book presents observations on the phenomena of fine sediment transport and their explanations under process-related divisions such as flocculation, erosion, and deposition.The text is a compilation of the author's lecture notes from nearly four decades of teaching and guiding graduate students in civil and coastal engineering. Illustrations of fine sediment transport processes and their complexities given in the book are taken from field and laboratory-based observations by the author and his students, as well as numerous investigators.The wide-ranging composition of particles (of inorganic and organic matter), their universal presence and their complex interactions with hydraulic forces make this branch of science a difficult one to deal with in a single treatise. It is therefore essential to study fine sediment transport as an independent subject rather than cover it in no more than a single chapter as many texts on coarse sediment transport have done.Even though the entire coverage is “introductory”, the twelve chapters collectively include more material than what can be reasonably dealt with in a one semester, three-credit course.The book includes an extensive description of the components of fine-grained — especially cohesive — sediment transport. It covers the development of the subject in scientific and engineering applications mainly from the 1950s to its present state. Solved examples and chapter-end exercises are also included.This text is aimed at senior civil engineering undergraduates and graduate students who, in the normal course of their study, seldom come across the subject of fine sediment transport in their curricula. Interested students should have a basic understanding of the mechanics of fluid flow and open channel hydraulics.
Dedication v
Preface vii
Chapter 1 Introduction
1(24)
1.1 Ancient Ports, Sea Level and Sedimentation
1(5)
1.2 Sediment Transport Hydraulics
6(4)
1.3 Driving Factors and Sediment Response
10(5)
1.4 Particles and Flocs
15(3)
1.5 Natural Sediment: Definition of Mud
18(3)
1.6 Scope of Presentation
21(2)
1.7 Exercises
23(2)
Chapter 2 Topics in Fluid Flow and Wave Motion
25(68)
2.1
Chapter Overview
25(1)
2.2 Time-Mean and Fluctuating Velocities
26(2)
2.3 Characteristic Numbers
28(4)
2.4 Viscosity
32(2)
2.5 Bed Shear Stress
34(9)
2.6 Interfacial Shear Stress
43(5)
2.7 Mixing Length Hypothesis
48(17)
2.7.1 Mixing length definition
48(1)
2.7.2 Boundary layer velocity profile
49(4)
2.7.3 Viscous contribution to velocity profile
53(5)
2.7.4 Effect of buoyancy on velocity profile
58(4)
2.7.5 Spectral description of turbulence
62(3)
2.8 Energy Balance Equation
65(1)
2.9 Flow Through Porous Media
66(4)
2.10 Water Waves
70(18)
2.10.1 Wave celerity and other properties
70(10)
2.10.2 Shoaling and refraction
80(2)
2.10.3 Finite-amplitude effect
82(2)
2.10.4 Breaking waves
84(2)
2.10.5 Wind-generated waves
86(2)
2.11 Exercises
88(5)
Chapter 3 Methods of Sediment Classification
93(51)
3.1
Chapter Overview
93(1)
3.2 Classification by Size
94(17)
3.2.1 Size and sediment type
94(5)
3.2.2 Volume-based size distribution
99(2)
3.2.3 Moments of size distribution
101(3)
3.2.4 Size, specific surface area and cohesion
104(7)
3.3 Classification by Composition
111(25)
3.3.1 Minerals
111(7)
3.3.2 X-ray diffraction pattern
118(7)
3.3.3 Clay structural units
125(1)
3.3.3.1 Basic units
125(1)
3.3.3.2 Kaolinites
126(1)
3.3.3.3 Smectites
127(2)
3.3.3.4 Illites
129(1)
3.3.3.5 Chlorites
129(1)
3.3.3.6 Palygorskite-sepiolite
129(1)
3.3.4 Differential thermal analysis
129(1)
3.3.5 Electric charge on clay particles
130(2)
3.3.6 Organic matter
132(4)
3.4 Classification by Plasticity
136(3)
3.5 Exercises
139(5)
Chapter 4 Flocculation and Floc Properties
144(88)
4.1
Chapter Overview
144(1)
4.2 Nomenclature
144(1)
4.3 Cohesion and Flocculation
145(29)
4.3.1 Electric double layer
145(4)
4.3.2 Double layer thickness
149(5)
4.3.3 Double layer repulsion
154(2)
4.3.4 van der Waals attraction
156(4)
4.3.5 Modes of particle association
160(3)
4.3.6 Solution effects on flocculation
163(7)
4.3.7 Critical salinity
170(4)
4.4 Floc Concentration Measures and Shear Strength
174(8)
4.4.1 Floc density
174(3)
4.4.2 Volume-based and mass-based concentrations
177(2)
4.4.3 Floc shear strength
179(3)
4.5 Flocs as Discrete Structures
182(18)
4.5.1 Order of aggregation concept
182(5)
4.5.2 Fractal representation
187(2)
4.5.3 Floc shear strength and density
189(4)
4.5.4 Floc size and density
193(2)
4.5.5 Floc size and shear strength
195(3)
4.5.6 Floc shape
198(2)
4.6 Collision Mechanisms
200(15)
4.6.1 Collision frequency functions
200(2)
4.6.2 Brownian motion
202(4)
4.6.3 Flow shear
206(3)
4.6.4 Differential settling
209(1)
4.6.5 Net collision frequency
210(1)
4.6.6 Collision efficiency and probability
210(2)
4.6.7 Flow shearing and collisional stresses on flocs
212(3)
4.7 Floc Size Evolution
215(6)
4.8 Size Spectra
221(5)
4.9 Exercises
226(6)
Chapter 5 Characterization of Mud Properties
232(85)
5.1
Chapter Overview
232(1)
5.2 Sediment and Fluid Characterization
232(9)
5.2.1 Bulk descriptors
232(2)
5.2.2 Particle size and settling velocity
234(2)
5.2.3 Mineral composition and organic content
236(1)
5.2.4 Density and volumetric measures
237(3)
5.2.5 Fluid salinity and temperature
240(1)
5.3 Mud Deformation Behavior
241(7)
5.3.1 Cohesive shear strength
241(1)
5.3.2 Yield under normal and shear stresses
241(6)
5.3.3 Vane shear strength
247(1)
5.4 Deformation by Static and Dynamic Shear Loading
248(22)
5.4.1 Mud rheology
248(2)
5.4.2 Shear modulus of elasticity and viscosity
250(2)
5.4.3 Viscoplastic behavior
252(4)
5.4.4 Effects of physicochemical factors on viscosity and yield strength
256(1)
5.4.4.1 Effects of minerals on viscosity
256(3)
5.4.4.2 Effects of concentration and shear on viscosity
259(5)
5.4.4.3 Effect of temperature on viscosity
264(3)
5.4.5 Effects of salinity on yield strength
267(3)
5.5 Viscoelastic Behavior
270(14)
5.5.1 General behavior
270(1)
5.5.2 Basic mechanical analogs
271(2)
5.5.3 Viscoelasticity characterization
273(1)
5.5.3.1 Static testing
273(4)
5.5.3.2 Dynamic testing
277(7)
5.6 Mud Rheometry
284(23)
5.6.1 Viscometer flow geometries
284(1)
5.6.1.1 Coaxial cylinders viscometer
284(3)
5.6.1.2 Capillary tube viscometer
287(2)
5.6.1.3 Cone-and-plate viscometer
289(1)
5.6.1.4 Parallel-plate viscometer
290(1)
5.6.1.5 Virtual gap rheometer
290(1)
5.6.2 Rheometry for yield stress
290(3)
5.6.3 Rheometry for standard linear solid
293(7)
5.6.4 Rheometry for empirical modeling
300(7)
5.7 Thixotropy and Gelation
307(4)
5.8 Exercises
311(6)
Chapter 6 Transport Load Definitions
317(69)
6.1
Chapter Overview
317(1)
6.2 Bed Material Load and Wash Load
318(4)
6.3 Threshold of Movement
322(19)
6.3.1 Critical shear stress
322(1)
6.3.2 Deterministic formulation
322(8)
6.3.3 Stochastic formulation
330(6)
6.3.4 Threshold of suspension
336(5)
6.4 Bed Load
341(15)
6.4.1 Deterministic formulation
341(3)
6.4.2 Stochastic formulation
344(9)
6.4.3 Energy-based formulation
353(3)
6.5 Suspended Load
356(11)
6.5.1 Sediment mass balance
356(5)
6.5.2 Concentration profile
361(5)
6.5.3 Reference concentration
366(1)
6.6 Two-Phase Flow Equations
367(3)
6.7 Concentration Determining Processes
370(11)
6.7.1 Layered concentration structure
370(7)
6.7.2 Transport processes
377(4)
6.8 Exercises
381(5)
Chapter 7 Settling and Deposition
386(91)
7.1
Chapter Overview
386(1)
7.2 Settling Velocity
387(57)
7.2.1 Free settling
387(1)
7.2.1.1 Settling at low particle Reynolds number
387(6)
7.2.1.2 Effect of higher Reynolds number
393(4)
7.2.1.3 Settling velocity distribution
397(1)
7.2.1.4 Free settling of non-cohesive particles
398(7)
7.2.2 Effect of aggregation processes
405(3)
7.2.3 Hindered settling
408(13)
7.2.4 Empirical settling velocity and flux equations
421(7)
7.2.5 Effect of salinity
428(1)
7.2.6 Effect of temperature
429(2)
7.2.7 Effect of shear rate
431(7)
7.2.8 Effect of organic matter
438(3)
7.2.9 Effect of oscillating flow
441(3)
7.3 Settling and Deposition in Flow
444(26)
7.3.1 Quiescent settling and flow effect
444(1)
7.3.2 Settling and deposition of uniform sediment
445(5)
7.3.3 Deposition of non-uniform sediment
450(1)
7.3.3.1 Rate of deposition and steady-state concentration
450(7)
7.3.3.2 Extension of deposition rate equation
457(4)
7.3.4 Significance of bed sediment exchange
461(1)
7.3.4.1 Exclusive versus simultaneous bed exchange
461(2)
7.3.4.2 Experiment with tagged particles
463(2)
7.3.4.3 Bed exchange paradigms
465(3)
7.3.5 Shear stress distribution
468(2)
7.4 Exercises
470(7)
Chapter 8 Sedimentation and Bed Formation
477(59)
8.1
Chapter Overview
477(1)
8.2 Effective Stresses and Flow in Porous Beds
478(3)
8.2.1 Effective stresses
478(1)
8.2.2 Flow continuity
479(2)
8.3 Sedimentation and Related Processes
481(25)
8.3.1 General description of settling and consolidation
481(5)
8.3.2 Non-homogeneity due to drainage channels and layering
486(2)
8.3.3 Sedimentation and use of tracers
488(3)
8.3.4 Empirical treatment of sedimentation
491(3)
8.3.5 Sedimentation by seepage flow
494(2)
8.3.6 Sedimentation from continuity
496(7)
8.3.7 Hindered settling analogy with consolidation
503(3)
8.4 Bed Development
506(19)
8.4.1 Consolidation and related processes
506(1)
8.4.2 Consolidation by overburden
507(4)
8.4.3 Self-weight effect
511(2)
8.4.4 Linearized solutions for void ratio
513(4)
8.4.5 Consolidation tests
517(4)
8.4.6 Bed density profile: empirical representation
521(4)
8.4.7 Bed rebound
525(1)
8.5 Exercises
525(11)
Chapter 9 Erosion and Entrainment
536(117)
9.1
Chapter Overview
536(1)
9.2 Modes of Erosion
536(3)
9.3 Surface Erosion
539(21)
9.3.1 Erosion formulation
539(2)
9.3.2 Erosion as a stochastic process
541(1)
9.3.2.1 Model of Partheniades
541(6)
9.3.2.2 Reinterpretation of Partheniades model
547(4)
9.3.3 Erosion as a rate process
551(3)
9.3.4 Semi-empirical erosion flux equations
554(1)
9.3.4.1 Uniform beds
554(4)
9.3.4.2 Non-uniform beds
558(2)
9.4 Factors Influencing Bed Shear Strength
560(32)
9.4.1 Bed shear strength and density
560(1)
9.4.1.1 General equation
560(1)
9.4.1.2 Plastic yield stress and density
561(5)
9.4.1.3 Vane shear strength and density
566(2)
9.4.1.4 Fracture toughness and penetrometer resistance
568(1)
9.4.1.5 Erosion shear strength and density
568(1)
9.4.2 Shear strength from yield stress
569(5)
9.4.3 Shear strength and consolidation
574(1)
9.4.3.1 Shear strength variation and mud scale
574(1)
9.4.3.2 Measurement of soft-bed erosion shear strength
575(10)
9.4.4 Shear strength and salinity
585(1)
9.4.5 Shear strength and natural organic matter
586(6)
9.5 Mass Erosion
592(7)
9.5.1 Stiff beds
592(1)
9.5.2 Weak beds
593(3)
9.5.3 Effect of flow acceleration
596(3)
9.6 Fluid Mud Entrainment
599(9)
9.6.1 Moving and stationary fluid mud
599(3)
9.6.2 Entrainment of stationary fluid mud
602(5)
9.6.3 Entrainment of flowing fluid mud
607(1)
9.7 Modeling Erosion with Deposition
608(13)
9.7.1 Exchange paradigms
608(5)
9.7.2 Effects of simultaneous exchange
613(4)
9.7.3 Effects of probabilistic representation
617(2)
9.7.4 Chesapeake Bay data
619(2)
9.8 Erosion Behavior of Sand-Mud (Clay) Mixtures
621(11)
9.8.1 Erosion modes
621(3)
9.8.2 Effect of clay on sand
624(8)
9.9 Stable Channels
632(17)
9.9.1 Critical shear stress
632(11)
9.9.2 Channel cross-section
643(3)
9.9.3 Channel distribution
646(3)
9.10 Exercises
649(4)
Chapter 10 Fluid Mud Properties and Behavior
653(84)
10.1
Chapter Overview
653(1)
10.2 Nature and Significance of Fluid Mud
653(4)
10.3 Estimation of Fluid Mud Thickness
657(10)
10.4 Fluid Mud by Liquefaction
667(26)
10.4.1 Bed failure by waves: drained and undrained conditions
667(1)
10.4.2 Fluid mud thickness
668(7)
10.4.3 Effect of liquefaction on shear modulus
675(3)
10.4.4 Criterion for liquefaction: elastic bed
678(5)
10.4.5 Criterion for liquefaction: viscoelastic bed
683(7)
10.4.6 Dynamic thickness of fluid mud
690(3)
10.5 Suspension Mixing
693(30)
10.5.1 Mixing criterion
693(3)
10.5.2 Generation of unstable interface
696(4)
10.5.3 Observations of interfacial disturbance
700(1)
10.5.3.1 Laboratory setting
700(3)
10.5.3.2 Field setting
703(3)
10.5.4 Effect of stratification on mass diffusion
706(6)
10.5.5 Lutocline rise
712(2)
10.5.6 Saturation concentration
714(4)
10.5.7 Effect of suspension on mixing length
718(5)
10.6 Observations of Dense Suspension Behavior and Effects
723(8)
10.6.1 Tidal environment
723(2)
10.6.2 Wave environment
725(5)
10.6.3 Rate of fluid mud formation
730(1)
10.7 Exercises
731(6)
Chapter 11 Wave-Mud Processes
737(97)
11.1
Chapter Overview
737(1)
11.2 Wave-Mud Processes and Imprint
738(4)
11.3 Energy Loss
742(2)
11.4 Wave in Viscous Fluid above Rigid Bed
744(5)
11.5 Shallow-Water Wave in Inviscid Fluid above Viscous Fluid
749(15)
11.6 Wave in Inviscid Fluid above Viscous Fluid in Non-Shallow Water
764(5)
11.7 Energy Loss and Rheology
769(26)
11.7.1 Percolation, bed friction and breaking wave
769(1)
11.7.1.1 Zones of applicability
769(2)
11.7.1.2 Percolation
771(3)
11.7.1.3 Bed friction in turbulent flow
774(1)
11.7.1.4 Breaking wave
774(2)
11.7.2 Poroelastic bed
776(1)
11.7.2.1 Energy loss
776(4)
11.7.2.2 Quasi-static bed response
780(1)
11.7.2.3 Dynamic bed response
781(1)
11.7.3 Viscoelastic bed
782(2)
11.7.4 Viscoplastic bed
784(1)
11.7.4.1 Two-layer wave-mud system
784(4)
11.7.4.2 Wave damping
788(3)
11.7.5 Parameters influencing wave damping coefficient
791(1)
11.7.5.1 Wave damping coefficients from analytic models
791(2)
11.7.5.2 Parametric effects on wave damping
793(2)
11.8 Fluid Mud: Semi-Analytic Solutions
795(13)
11.8.1 Method of analysis
795(5)
11.8.2 Wave damping
800(3)
11.8.3 Comparison of wave damping coefficient estimates
803(2)
11.8.4 Mud mass transport
805(3)
11.9 Applicability of Energy Loss Mechanisms
808(3)
11.10 Long-Wave in Fluid Mud
811(3)
11.11 Local Wave Erosion Processes
814(12)
11.11.1 Bed state and behavior
814(1)
11.11.2 Erosion by non-breaking waves
815(3)
11.11.3 Erosion by breaking waves
818(3)
11.11.4 Bluff erosion
821(2)
11.11.5 Fluid mud entrainment
823(3)
11.12 Suspended Sediment Concentration due to Oscillating Flow
826(1)
11.13 Exercises
827(7)
Chapter 12 Sedimentation Phenomena
834(117)
12.1
Chapter Overview
834(1)
12.2 Shore Profiles
835(51)
12.2.1 Non-cohesive beach profiles
835(3)
12.2.2 Bruun Rule
838(3)
12.2.3 Cohesive mud shore profiles
841(1)
12.2.3.1 Profile features and nomenclature
841(3)
12.2.3.2 Waves and mud shores
844(8)
12.2.3.3 Terminal depth
852(3)
12.2.3.4 Mass transport
855(1)
12.2.3.5 Wave effect on profile shape
856(7)
12.2.3.6 Profile change
863(2)
12.2.3.7 Tide effects
865(9)
12.2.3.8 Mudbank profiles
874(3)
12.2.3.9 Variability in particle size and turbidity
877(4)
12.2.3.10 Shore profile stability index
881(5)
12.3 Nearshore Sediment Transport
886(15)
12.3.1 Longshore sediment discharge
886(2)
12.3.2 Cross-shore suspension concentration variation
888(1)
12.3.2.1 General equation for concentration
888(1)
12.3.2.2 Surf zone concentration
889(1)
12.3.2.3 Offshore zone concentration
889(3)
12.3.3 Longshore sediment discharge estimation
892(6)
12.3.4 Bottom changes in the natural environment
898(3)
12.4 Turbid Gravity Current
901(6)
12.5 Sedimentation in Channels and Small Basins
907(29)
12.5.1 Channel and basin geometry
907(1)
12.5.2 Offshore entrance channel
907(2)
12.5.3 Deposition pattern near entrances
909(10)
12.5.4 Basin with through-flow
919(4)
12.5.5 Basin with one entrance
923(5)
12.5.6 Closed-end canal
928(7)
12.5.7 Sedimentation trap
935(1)
12.6 Fluid Mud, Depth Definitions and Navigability
936(5)
12.7 Exercises
941(10)
Appendix A Atomic Weights and Physicochemical Constants
951(2)
Appendix B Equations of Flow Continuity and Fluid Motion
953(7)
B.1 Equation of Continuity
953(1)
B.2 Equation of Motion in Rectangular Coordinates
954(2)
B.3 Equation of Motion in Cylindrical Coordinates
956(1)
B.4 Equation of Motion in Spherical Coordinates
957(3)
Appendix C Particle Minerals, Miller Indices and Settling Time
960(9)
Appendix D Normal Probability Integral Values
969(2)
Appendix E Vertical Diffusion
971(2)
Appendix F Wind Scales and Sea Description
973(2)
Bibliography 975(52)
Index 1027