Atjaunināt sīkdatņu piekrišanu

Introduction To Hydraulics Of Fine Sediment Transport, An Second Edition [Hardback]

(Univ Of Florida, Usa)
  • Formāts: Hardback, 1056 pages
  • Sērija : Advanced Series On Ocean Engineering 56
  • Izdošanas datums: 22-Dec-2022
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 981125723X
  • ISBN-13: 9789811257230
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 191,26 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 1056 pages
  • Sērija : Advanced Series On Ocean Engineering 56
  • Izdošanas datums: 22-Dec-2022
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 981125723X
  • ISBN-13: 9789811257230
Citas grāmatas par šo tēmu:

This Book Expounds The Hydraulics Of Fine Sediment Which Is Almost Ubiquitously Found In Coastal And Estuarine Waters, And In Rivers, Lakes, And Reservoirs. Although The Basic Subject May Be Categorized As Applied Marine Physics In Shallow Waters, Several Physicochemical And Biological Effects On Particulate Transport Have Been Addressed. In This Second Edition Most Of The Chapters Have Been Substantially Updated, Rewritten, And Expanded. Overall, A Significant Change Has Also Been Made Throughout By Replacing Sediment Concentration, A Unit Dependent Quantity At The Heart Of Numerous Descriptions, Measurements, And Calculations, With The Nondimensional Sediment Volume Fraction. It Marks A Divergence In The Manner In Which Fine Sediment Transport Data And Calculations Are Conventionally Presented. The Book Is Mainly Written For Civil Engineering Seniors And Graduate Students, To Offer A Comprehensive Foundation In Hydraulics Of Fine Sediment. The Book Is Also A Useful Reference For Researchers Interested In The Effects Of Physical Chemistry And Biology On Fine Sediment Transport In Water And To An Extent On Coastal And Estuarine Morphodynamics, Sediment Transport, Port And Harbor Engineering, And Applied Shallow Watwer Marine Physics. The Book Is Also Recommended Reading For Those Interested In Understanding Particle Transport In Water.

Preface to the First Edition vii
Preface to the Second Edition xi
About the Author xiii
Chapter 1 Introduction
1(26)
1.1 Sea Level and Sedimentation
1(5)
1.2 Sediment Transport Hydraulics
6(4)
1.3 Driving Factors and Sediment Response
10(4)
1.4 Particles versus Floes
14(4)
1.5 Definition of Mud
18(3)
1.6 Scope of Presentation
21(1)
1.7 Exercises
22(5)
Chapter 2 Fluid Flow and Wave Motion
27(68)
2.1 Overview
27(1)
2.2 Time-mean and Fluctuating Velocities
27(2)
2.3 Characteristic Numbers
29(4)
2.4 Viscosity
33(2)
2.5 Bed Shear Stress
35(8)
2.6 Interfacial Shear Stress
43(4)
2.7 Mixing Length
47(15)
2.7.1 Definition
47(1)
2.7.2 Velocity profile
48(4)
2.7.3 Viscous contribution
52(3)
2.7.4 Effect of buoyancy
55(4)
2.7.5 Spectral description of turbulence
59(3)
2.8 Energy Balance
62(2)
2.9 Flow through Porous Medium
64(3)
2.10 Water Waves
67(21)
2.10.1 Wave celerity and other properties
67(9)
2.10.2 Shoaling and refraction
76(2)
2.10.3 Finite-amplitude effects
78(2)
2.10.4 Breaking waves
80(2)
2.10.5 Wind waves
82(1)
2.10.6 Waves with current
83(3)
2.10.7 Stokes' drift and streaming
86(2)
2.11 Exercises
88(7)
Chapter 3 Sediment Classification
95(48)
3.1 Overview
95(1)
3.2 Classification by Size
96(16)
3.2.1 Nomenclature
96(5)
3.2.2 Size distribution
101(2)
3.2.3 Moments of size distribution
103(2)
3.2.4 Size, specific surface area, and cohesion
105(7)
3.3 Classification by Composition
112(23)
3.3.1 Minerals
112(6)
3.3.2 X-ray diffractometry
118(7)
3.3.3 Clay structure
125(1)
3.3.3.1 Basic units
125(1)
3.3.3.2 Kaolinites
126(1)
3.3.3.3 Smectites
127(1)
3.3.3.4 Illites
128(1)
3.3.3.5 Chlorites
129(1)
3.3.3.6 Palygorskite--sepiolite
129(1)
3.3.4 Differential thermal analysis
129(1)
3.3.5 Electric charge on particles
129(2)
3.3.6 Role of Organic matter
131(1)
3.3.6.1 Composition and properties
131(3)
3.3.6.2 Effect on transport
134(1)
3.4 Classification by Plasticity
135(3)
3.5 Exercises
138(5)
Chapter 4 Flocculation and Floe Properties
143(92)
4.1 Overview
143(1)
4.2 Cohesion and Flocculation
143(29)
4.2.1 Definitions
143(1)
4.2.2 Electric double layer
144(4)
4.2.3 Double layer thickness
148(3)
4.2.4 Double layer repulsion
151(3)
4.2.5 Van der Waals attraction
154(4)
4.2.6 Particle associations
158(2)
4.2.7 Zeta-potential and mobility
160(2)
4.2.8 Solution effects on flocculation
162(7)
4.2.9 Critical salinity
169(3)
4.3 Floe Density and Strength
172(10)
4.3.1 Density from settling column
172(1)
4.3.2 Density from flocculator
173(1)
4.3.3 Density from capillary viscometer
174(5)
4.3.4 Properties from concentric-cylinder viscometer
179(3)
4.4 Floes as Discrete Structures
182(17)
4.4.1 Aggregation order
182(4)
4.4.2 Fractal representation
186(2)
4.4.3 Density and strength
188(4)
4.4.4 Density and size
192(2)
4.4.5 Strength and size
194(3)
4.4.6 Shape
197(2)
4.5 Collision Mechanisms
199(15)
4.5.1 Elastic and inelastic collisions
199(1)
4.5.2 Collision frequency functions
200(1)
4.5.3 Brownian motion
201(1)
4.5.3.1 Collision frequency
201(1)
4.5.3.2 Perikinetic aggregation
202(2)
4.5.4 Flow shear
204(3)
4.5.5 Differential settling
207(1)
4.5.6 Total collision frequency
208(1)
4.5.7 Collisional parameters
209(1)
4.5.8 Flow shear and collisional stresses
210(4)
4.6 Floe Size Evolution
214(13)
4.6.1 Particle number balance
214(4)
4.6.2 Floe growth formulation
218(4)
4.6.3 Size spectra
222(5)
4.7 Exercises
227(8)
Chapter 5 Fine Sediment Properties
235(74)
5.1 Overview
235(1)
5.2 Sediment and Fluid Characterization
235(7)
5.2.1 Bulk descriptors
235(1)
5.2.2 Particle size and settling velocity
236(2)
5.2.3 Mineral composition and organic content
238(1)
5.2.4 Mass, volume, and density measures
239(2)
5.2.5 Fluid salinity and temperature
241(1)
5.3 Deformation
242(6)
5.3.1 Stresses in soil
242(3)
5.3.2 Mohr-Coulomb equation
245(3)
5.4 Rheology
248(17)
5.4.1 Forcing and response timescales
248(2)
5.4.2 Viscoplastic behavior
250(3)
5.4.3 Effects of physicochemical factors
253(1)
5.4.3.1 Minerals
253(3)
5.4.3.2 Shear rate and volume fraction
256(4)
5.4.3.3 Fluid temperature
260(2)
5.4.4 Pseudoplasticity and floe structure
262(3)
5.5 Rheometry for Viscoplasticity
265(8)
5.5.1 Coaxial cylinders viscometer
266(2)
5.5.2 Capillary tube viscometer
268(2)
5.5.3 Cone-and-plate viscometer
270(1)
5.5.4 Parallel-plate viscometer
270(1)
5.5.5 Cylinder and vane geometries
271(1)
5.5.6 Vane shear tester
271(2)
5.5.7 Tuning fork vibrator rheometer
273(1)
5.6 Rheometry for Viscoelasticity
273(9)
5.6.1 Static testing
273(3)
5.6.2 Dynamic testing
276(6)
5.7 Viscoelastic Models
282(10)
5.7.1 Simple analogs
282(3)
5.7.2 Kelvin-Voigt and Maxwell Models
285(1)
5.7.2.1 Creep by strain loading
285(1)
5.7.2.2 Creep by stress loading
286(1)
5.7.2.3 Creep test by applied strain rate
287(1)
5.7.2.4 Oscillatory tests
288(1)
5.7.3 Standard linear solid model
288(4)
5.7.4 Empirical model
292(1)
5.8 Thixotropy and Gelation
292(4)
5.9 Volume Fraction from Sound and Light Data
296(5)
5.9.1 Acoustic backscatter
296(3)
5.9.2 Turbidity
299(1)
5.9.3 Particle diameter
300(1)
5.10 Exercises
301(8)
Chapter 6 Transport Load
309(82)
6.1 Overview
309(1)
6.2 Bed Material and Wash Loads
310(4)
6.3 Threshold of Movement
314(19)
6.3.1 Critical shear stress
314(1)
6.3.2 Deterministic formulation
314(6)
6.3.3 Stochastic formulation
320(5)
6.3.4 Threshold of suspension
325(4)
6.3.5 Threshold for oscillating plug
329(4)
6.4 Bed Load
333(14)
6.4.1 Deterministic formulation
333(1)
6.4.2 Stochastic formulation
334(9)
6.4.3 Energy-based formulation
343(1)
6.4.4 Wave effect
344(2)
6.4.5 Bed load of cohesive sediment
346(1)
6.5 Suspended Load
347(10)
6.5.1 Sediment mass balance
347(4)
6.5.2 Sediment profile
351(5)
6.5.3 Reference volume fraction
356(1)
6.6 Settling of Cohesionless Particles
357(7)
6.6.1 Sand and silt
357(3)
6.6.2 Effect of shape
360(1)
6.6.3 Bivalve shells
361(3)
6.7 Turbulent Shear Stress Measurement
364(2)
6.8 Two-Phase Flow
366(4)
6.9 Fine Sediment Suspension Structure
370(9)
6.9.1 Stratification
370(3)
6.9.2 Transport processes
373(4)
6.9.3 Sediment profile
377(2)
6.10 Local Scour
379(5)
6.10.1 Flow and bed forms
379(1)
6.10.2 Cylindrical piles
380(3)
6.10.3 Submerged pipelines
383(1)
6.11 Exercises
384(7)
Chapter 7 Settling and Deposition
391(74)
7.1 Overview
391(1)
7.2 Free Settling
392(13)
7.2.1 Stokes' law
392(4)
7.2.2 Extensions of Stokes' law
396(1)
7.2.2.1 Non-spherical particles
396(1)
7.2.2.2 Effect of high Reynolds number
397(1)
7.2.2.3 Effect of fractal representation
398(1)
7.2.2.4 Effect of floe permeability
399(3)
7.2.3 Settling velocity distribution
402(3)
7.3 Flocculation Settling
405(21)
7.3.1 Effect of volume fraction
405(2)
7.3.2 Effect of shear rate
407(1)
7.3.2.1 Teeter equation
407(2)
7.3.2.2 Winterwerp equation
409(1)
7.3.2.3 Equation comparison
410(1)
7.3.3 Preequilibrium settling velocity
410(1)
7.3.4 Effect of salinity
411(3)
7.3.5 Effect of temperature
414(4)
7.3.6 Effect of organic matter
418(4)
7.3.7 Effect of oscillating flow
422(2)
7.3.8 Basis of flocculation factor
424(2)
7.4 Hindered Settling
426(15)
7.4.1 Richardson--Zaki analysis
426(11)
7.4.2 Volume fraction profile
437(1)
7.4.3 Wolanski equation
437(4)
7.5 Settling Velocity Measurements
441(4)
7.5.1 Owen tube
441(1)
7.5.2 Oscillating grid column
441(4)
7.6 Settling and Deposition in Flow
445(14)
7.6.1 Effect of flow
445(1)
7.6.2 Deposition of uniform sediment
446(1)
7.6.2.1 Free settling
446(2)
7.6.2.2 Flocculation settling
448(3)
7.6.3 Multiclass deposition
451(1)
7.6.3.1 Residual volume fraction
451(1)
7.6.3.2 Deposition flux
452(3)
7.6.4 Bed exchange
455(1)
7.6.4.1 Test with tagged particles
455(2)
7.6.4.2 Dilution test
457(2)
7.7 Exercises
459(6)
Chapter 8 Bed Formation
465(54)
8.1 Overview
465(1)
8.2 Space-filling
465(2)
8.3 Effective Stresses and Flow in Beds
467(4)
8.3.1 Effective stresses
467(2)
8.3.2 Flow continuity
469(2)
8.4 Sedimentation Processes
471(21)
8.4.1 Settling and consolidation
471(3)
8.4.2 Drainage channels and layering
474(4)
8.4.3 Bed change schematization
478(2)
8.4.4 Use of tracers
480(2)
8.4.5 Empirical treatment of sedimentation
482(2)
8.4.6 Sedimentation by seepage flow
484(1)
8.4.7 Sedimentation from mass continuity
485(7)
8.5 Bed Development
492(17)
8.5.1 Consolidation and related processes
492(1)
8.5.2 Consolidation by overburden
493(5)
8.5.3 Self-weight effect
498(2)
8.5.4 Measurement of permeability
500(1)
8.5.5 Linearized equations for void ratio
501(3)
8.5.6 Self-weight consolidation tests
504(3)
8.5.7 Compression and swell indices
507(2)
8.6 Bed Density Profile
509(3)
8.7 Exercises
512(7)
Chapter 9 Erosion
519(122)
9.1 Overview
519(1)
9.2 Modes of Erosion
519(4)
9.3 Surface Erosion
523(19)
9.3.1 Scope
523(1)
9.3.2 Erosion as a stochastic process
524(1)
9.3.2.1 Partheniades equation
524(5)
9.3.2.2 Revisions of Partheniades equation
529(4)
9.3.3 Erosion as a rate process
533(5)
9.3.4 Semi-empirical erosion equations
538(1)
9.3.4.1 Uniform beds
538(2)
9.3.4.2 Non-uniform beds
540(2)
9.4 Shear Strength
542(27)
9.4.1 Measures of shear strength
542(2)
9.4.2 Bed shear strength
544(1)
9.4.2.1 Dependence on double layer
544(1)
9.4.2.2 Dependence on yield stress
544(3)
9.4.2.3 Variation with diameter
547(1)
9.4.2.4 Effect of bed structure
548(2)
9.4.2.5 Effect of consolidation
550(2)
9.4.2.6 Effect of salinity
552(1)
9.4.2.7 Effects of biota and organic matter
553(6)
9.4.3 Yield strength
559(1)
9.4.3.1 Relationship with floe volume fraction
559(4)
9.4.3.2 Slope stability
563(1)
9.4.3.3 Mud scale
564(1)
9.4.4 Vane shear strength
564(1)
9.4.4.1 Relationship with volume fraction
564(3)
9.4.4.2 Fracture toughness and penetrometer resistance
567(1)
9.4.5 Atterberg limits and erosion
567(2)
9.5 Mass Erosion
569(8)
9.5.1 Stiff beds
569(1)
9.5.2 Weak beds
570(5)
9.5.3 Effect of flow acceleration
575(2)
9.6 Fluid Mud Entrainment
577(9)
9.6.1 Modes of entrainment and mixing
577(3)
9.6.2 Entrainment of stationary fluid mud
580(5)
9.6.3 Entrainment of flowing fluid mud
585(1)
9.7 Simultaneous Erosion and Deposition
586(12)
9.7.1 Lab and field evidence
586(1)
9.7.2 Mass balance approach
586(2)
9.7.3 Multiclass deposition/erosion
588(4)
9.7.4 Examples of aggregation simulation
592(1)
9.7.4.1 Deposition tests
592(1)
9.7.4.2 Dilution test
593(2)
9.7.4.3 Chesapeake Bay measurements
595(1)
9.7.4.4 Tamar settling velocities
596(2)
9.8 Erosion of Mud-Sand Mixtures
598(12)
9.8.1 Mud-sand mixtures
598(2)
9.8.2 Erosion modes
600(3)
9.8.3 Corollary effect of clay on sand erosion
603(7)
9.9 Local Scour
610(2)
9.9.1 Cylindrical piles
610(1)
9.9.2 Pipelines
611(1)
9.10 Channel Morphology and Morphodynamics
612(23)
9.10.1 Design critical shear stress
612(7)
9.10.2 Channel cross-section
619(1)
9.10.2.1 Steady flow
619(2)
9.10.2.2 Tidal flow
621(8)
9.10.2.3 Branching channels
629(1)
9.10.3 Shoal-and-channel cells
630(5)
9.11 Exercises
635(6)
Chapter 10 Fluid Mud Properties
641(82)
10.1
Chapter Overview
641(1)
10.2 Mud as a Fluid
641(3)
10.3 Fluid Mud Definition
644(9)
10.4 Processes
653(6)
10.4.1 Growth and decay
653(1)
10.4.2 Basic processes
654(2)
10.4.3 Lutocline due to waves
656(3)
10.5 Mixing of Fluids
659(13)
10.5.1 Mixing criterion
659(3)
10.5.2 Interfacial instabilities
662(3)
10.5.3 Interface observations
665(1)
10.5.3.1 Laboratory setting
665(3)
10.5.3.2 Field setting
668(4)
10.6 Effects of Turbulence
672(12)
10.6.1 Diffusion
672(5)
10.6.2 Saturation volume fraction
677(3)
10.6.3 Effect of suspension on mixing length
680(4)
10.7 Fluid Mud Detection
684(25)
10.7.1 Modes of formation
684(1)
10.7.2 Detection by effective stress
685(4)
10.7.3 Detection by shear modulus
689(3)
10.7.4 Fluid mud thickness: Poroelastic bed
692(3)
10.7.5 Fluid mud thickness: Viscoelastic bed
695(6)
10.7.6 Fluid mud thickness: Elastoviscoplastic bed
701(3)
10.7.7 Fluid mud thickness: Flow over sloping bed
704(3)
10.7.8 Significance of thixotropy
707(2)
10.8 Field Observations
709(7)
10.8.1 Tidal environment
709(2)
10.8.2 Wave environment
711(5)
10.9 Exercises
716(7)
Chapter 11 Wave-Mud Processes
723(84)
11.1
Chapter Overview
723(1)
11.2 Wave Damping
723(4)
11.3 Wave Energy Loss
727(1)
11.4 Percolation, Bed Friction, and Wave Breaking
728(6)
11.4.1 Zones of applicability
728(2)
11.4.2 Percolation
730(2)
11.4.3 Bed friction in turbulent flow
732(1)
11.4.4 Wave breaking
733(1)
11.5 Wave in Viscous Fluid above Rigid Bed
734(5)
11.6 Wave in Shallow Inviscid Fluid above Viscous Fluid
739(9)
11.7 Wave in Non-shallow Inviscid Fluid above Viscous Fluid
748(4)
11.8 Wave in Inviscid Fluid above Viscoelastoplastic Bottoms
752(6)
11.8.1 Viscoelastic bottom
752(1)
11.8.2 Viscoplastic bottom
753(1)
11.8.2.1 Two-layer wave--mud system
753(3)
11.8.2.2 Solitary wave damping
756(2)
11.9 Wave over Poroelastic Bed
758(6)
11.9.1 Coulomb damping
758(4)
11.9.2 Quasi-static bed
762(1)
11.9.3 Heaving bed
763(1)
11.10 Wave Damping Coefficient
764(4)
11.10.1 Coefficient from analytic models
764(2)
11.10.2 Nondimensional representation
766(2)
11.11 Wave-Fluid Mud Second-Order Solutions
768(7)
11.11.1 Method of analysis
768(4)
11.11.2 Wave damping
772(3)
11.12 Comparison of Rheological Models
775(1)
11.13 Fluid Mud Streaming
776(2)
11.14 Applicability of Energy Loss Mechanisms
778(3)
11.15 Long-Wave in Fluid Mud
781(2)
11.16 Local Wave Erosion Processes
783(15)
11.16.1 Bed state and behavior
783(1)
11.16.2 Erosion by non-breaking waves
784(3)
11.16.3 Erosion by breaking waves
787(3)
11.16.4 Bluff erosion
790(1)
11.16.5 Fluid mud entrainment by waves
791(3)
11.16.6 Resuspension by ship waves
794(4)
11.17 Suspended Sediment in Oscillating Flow
798(1)
11.18 Exercises
799(8)
Chapter 12 Sedimentation Phenomena
807(114)
12.1 Overview
807(1)
12.2 Shore Profiles
807(30)
12.2.1 Non-cohesive beach profiles
807(4)
12.2.2 Bruun Rule
811(2)
12.2.3 Cross-shore movement
813(2)
12.2.4 Alongshore transport
815(1)
12.2.4.1 Longshore current
815(2)
12.2.4.2 Longshore non-cohesive sediment load
817(1)
12.2.5 Mudshore profiles
817(1)
12.2.5.1 Features
817(4)
12.2.5.2 Mudshores and waves
821(6)
12.2.5.3 Terminal depth
827(3)
12.2.5.4 Mud streaming
830(1)
12.2.5.5 Profile shape
830(7)
12.3 Alongshore Mud Transport
837(17)
12.3.1 Alongshore sediment load
837(1)
12.3.2 Cross-shore variation of suspended sediment
837(1)
12.3.2.1 General equation
837(1)
12.3.2.2 Surf zone suspended sediment
838(1)
12.3.2.3 Offshore zone suspended sediment
839(2)
12.3.2.4 Alongshore unit sediment discharge
841(4)
12.3.2.5 Profile change with time
845(1)
12.3.3 Tide effects
846(8)
12.4 Mudbanks
854(16)
12.4.1 Profile shape
854(3)
12.4.2 Areal bathymetry
857(4)
12.4.3 Particle size, tide, and waves
861(3)
12.4.4 Waves and turbidity
864(1)
12.4.5 Stability index
864(6)
12.5 Turbid Current
870(11)
12.5.1 Reservoirs
870(1)
12.5.2 Closed-end canals
871(4)
12.5.3 Navigation channels
875(2)
12.5.4 Submarine canyons
877(2)
12.5.5 Ignitive transport
879(2)
12.6 Sedimentation in Channels and Small Basins
881(25)
12.6.1 Sedimentation and Current Deflection Wall
881(4)
12.6.2 Offshore entrance channel
885(2)
12.6.3 Deposition near Entrances
887(8)
12.6.4 Basin with through-flow
895(4)
12.6.5 Basin with single entrance
899(4)
12.6.6 Sedimentation trap
903(3)
12.7 Saltmarsh Elevation
906(2)
12.8 Nautical Depth
908(5)
12.9 Exercises
913(8)
Appendices
A Atomic Weights and Physicochemical Constants
921(2)
B Equations of Flow Continuity and Fluid Motion
923(6)
B.1 Equation of Continuity
923(1)
B.2 Equation of Motion in Rectangular Coordinates
923(2)
B.3 Equation of Motion in Cylindrical Coordinates
925(1)
B.4 Equation of Motion in Spherical Coordinates
926(3)
C Particle Minerals, Miller Indices and Settling Time
929(10)
D Normal Probability Integral Values
939(4)
E Vertical Diffusion
943(2)
F Wind Scales and Sea Description
945(4)
Bibliography 949(62)
Index 1011