Atjaunināt sīkdatņu piekrišanu

Introduction to Independence for Analysts [Mīkstie vāki]

  • Formāts: Paperback / softback, 256 pages, height x width x depth: 228x152x26 mm, weight: 736 g, Worked examples or Exercises
  • Sērija : London Mathematical Society Lecture Note Series
  • Izdošanas datums: 10-Dec-1987
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521339960
  • ISBN-13: 9780521339964
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 89,83 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 256 pages, height x width x depth: 228x152x26 mm, weight: 736 g, Worked examples or Exercises
  • Sērija : London Mathematical Society Lecture Note Series
  • Izdošanas datums: 10-Dec-1987
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521339960
  • ISBN-13: 9780521339964
Citas grāmatas par šo tēmu:
Forcing is a powerful tool from logic which is used to prove that certain propositions of mathematics are independent of the basic axioms of set theory, ZFC.

Forcing is a powerful tool from logic which is used to prove that certain propositions of mathematics are independent of the basic axioms of set theory, ZFC. This book explains clearly, to non-logicians, the technique of forcing and its connection with independence, and gives a full proof that a naturally arising and deep question of analysis is independent of ZFC. It provides an accessible account of this result, and it includes a discussion, of Martin's Axiom and of the independence of CH.

Papildus informācija

Forcing is a powerful tool from logic which is used to prove that certain propositions of mathematics are independent of the basic axioms of set theory, ZFC.
1. Homomorphisms from algebras of continuous functions;
2. Partial orders, Boolean algebras, and ultraproducts;
3. Woodin's condition;
4. Independence in set theory;
5. Martin's Axiom;
6. Gaps in ordered sets;
7. Forcing;
8. Iterated Forcing.