Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Mathematical Philosophy

4.04/5 (1523 ratings by Goodreads)
  • Formāts: 226 pages
  • Sērija : Routledge Classics
  • Izdošanas datums: 15-Sep-2022
  • Izdevniecība: Routledge
  • Valoda: eng
  • ISBN-13: 9781000687033
  • Formāts - EPUB+DRM
  • Cena: 22,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 226 pages
  • Sērija : Routledge Classics
  • Izdošanas datums: 15-Sep-2022
  • Izdevniecība: Routledge
  • Valoda: eng
  • ISBN-13: 9781000687033

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"The philosophy of mathematics will naturally be expected to deal with questions at the frontier of knowledge, as to which comparative certainty is not yet attained. But separation of such questions is hardly likely to be fruitful unless the more scientific parts of mathematics are known. A book dealing with those parts may, therefore, claim to be an introduction to mathematical philosophy..." - Bertrand Russell, from the Preface

First published in 1919, Introduction to Mathematical Philosophy shows Russell drawing on his formidable knowledge of philosophy and mathematics to write a brilliant introduction to the subject. Russell explains that mathematics can be approached in two distinct directions: one that is driven by a mechanical kind of simplicity and builds towards complexity, from integers to fractions and real numbers to complex ones; and one that searches for abstractness and logical simplicity by asking what general principles underlie mathematics.

From here Russell introduces and explains, in his customary pellucid prose, the definition of numbers, finitude, correlation and relation, mathematical limits, infinity, propositional descriptions and classes. Russell concludes with a fascinating summary of the relationship between mathematics and logic, of which he states "logic is the youth of mathematics."

This Routledge Classics edition includes a new Foreword by Michael Potter.



First published in 1919, Introduction to Mathematical Philosophy shows Russell drawing on his formidable knowledge of philosophy and mathematics to write a brilliant introduction to the subject. This Routledge Classics edition includes a new Foreword by Michael Potter.

Foreword To The Routledge Classics Edition ix
Publisher's Acknowledgement xix
Preface xxi
Editor's Note xxiii
1 The Series of Natural Numbers
1(10)
2 Definition of Number
11(9)
3 Finitude and Mathematical Induction
20(9)
4 The Definition of Order
29(12)
5 Kinds of Relations
41(9)
6 Similarity of Relations
50(10)
7 Rational, Real, and Complex Numbers
60(14)
8 Infinite Cardinal Numbers
74(12)
9 Infinite Series and Ordinals
86(7)
10 Limits and Continuity
93(9)
11 Limits and Continuity of Functions
102(10)
12 Selections and the Multiplicative Axiom
112(13)
13 The Axiom of Infinity and Logical Types
125(12)
14 Incompatibility and the Theory of Deduction
137(11)
15 Propositional Functions
148(11)
16 Descriptions
159(13)
17 Classes
172(12)
18 Mathematics and Logic
184(13)
Index 197
Bertrand Russell (1872-1970). A celebrated mathematician and logician, Russell was and remains one of the most genuinely widely read and popular philosophers of modern times.