Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Mathematics

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 108,57 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook is designed for an Introduction to Proofs course organized around the themes of number and space. Concepts are illustrated using both geometric and number examples, while frequent analogies and applications help build intuition and context in the humanities, arts, and sciences. Sophisticated mathematical ideas are introduced early and then revisited several times in a spiral structure, allowing students to progressively develop rigorous thinking. Throughout, the presentation is enlivened with whimsical illustrations, apt quotations, and glimpses of mathematical history and culture. Early chapters integrate an introduction to sets, logic, and beginning proof techniques with a first exposure to more advanced mathematical structures. The middle chapters focus on equivalence relations, functions, and induction. Carefully chosen examples elucidate familiar topics, such as natural and rational numbers and angle measurements, as well as new mathematics, such as modular arithmetic and beginning graph theory. The book concludes with a thorough exploration of the cardinalities of finite and infinite sets and, in two optional chapters, brings all the topics together by constructing the real numbers and other complete metric spaces. Designed to foster the mental flexibility and rigorous thinking needed for advanced mathematics, Introduction to Mathematics suits either a lecture-based or flipped classroom. A year of mathematics, statistics, or computer science at the university level is assumed, but the main prerequisite is the willingness to engage in a new challenge.
Sets
Sets with structure
Logic, briefly
Basic proof techniques, briefly
Building sets
Optional: Set theory axiomatics
Equivalence relations
Functions
Advanced proof techniques
The sizes of sets
Sequences: From numbers to spaces
New numbers from completed spaces
Axioms
A summary of proof techniques
Typography
Bibliography
Index.
Scott A. Taylor, Colby College, Waterville, ME