Atjaunināt sīkdatņu piekrišanu

Introduction to Modern Magnetohydrodynamics [Hardback]

(École Polytechnique, Paris)
  • Formāts: Hardback, 288 pages, height x width x depth: 252x179x16 mm, weight: 710 g, 4 Tables, black and white; 15 Halftones, color; 12 Halftones, black and white; 80 Line drawings, black and white
  • Izdošanas datums: 06-Oct-2016
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1107158656
  • ISBN-13: 9781107158658
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 88,53 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 288 pages, height x width x depth: 252x179x16 mm, weight: 710 g, 4 Tables, black and white; 15 Halftones, color; 12 Halftones, black and white; 80 Line drawings, black and white
  • Izdošanas datums: 06-Oct-2016
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1107158656
  • ISBN-13: 9781107158658
Citas grāmatas par šo tēmu:
Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.

Recenzijas

'With an appealing combination of background material and carefully selected mathematics, Galtier succeeds in presenting the flavor of each topic. His approach manages to whet readers' appetites without overwhelming them with lengthy derivations or excessive technicalities. The manageable level of detail and the modest length of the book make it suitable as an accompaniment to a graduate lecture course, which is indeed how the text originated. Particularly noteworthy is the inclusion of material on the Hall effect, which reflects a growing interest in that phenomenon in the context of MHD Galtier's attractive and concise volume joins several excellent modern introductory textbooks with somewhat different styles and emphases. I would recommend Introduction to Modern Magnetohydrodynamics to students - especially graduate students - learning the basics of this exciting field.' Gordon Ogilvie, Physics Today

Papildus informācija

An introductory text on magnetohydrodynamics for advanced students, covering its broad range of applications in nature and in the laboratory.
Preface xiii
Table of Physical Quantities
xv
Part I Foundations
1(48)
1 Introduction
3(16)
1.1 Space and Laboratory Plasma Physics
3(4)
1.2 What Is a Plasma?
7(2)
1.3 Kinetic Description
9(4)
1.3.1 Collisionless Plasma
10(1)
1.3.2 Plasma with Collisions
11(1)
1.3.3 Non-linearities
12(1)
1.4 Time Scales and Length Scales
13(4)
1.4.1 Plasma Oscillations
13(1)
1.4.2 Electric Screening
14(1)
1.4.3 Magnetic Screening
15(1)
1.4.4 Cyclotron frequency
16(1)
1.5 From Kinetic to Fluids
17(2)
1.5.1 Multi-fluid Equations
17(1)
1.5.2 Mono-fluid Equations
18(1)
2 Magnetohydrodynamics
19(13)
2.1 Introduction
19(2)
2.1.1 Electromagnetic Induction
19(2)
2.1.2 Extension to Conducting Fluids
21(1)
2.2 Towards a Formulation of MHD
21(3)
2.2.1 Maxwell's Equations
21(2)
2.2.2 Generalized Ohm's Law
23(1)
2.3 Quasi-neutrality
24(1)
2.4 Generalized (Hall) MHD Equations
25(4)
2.4.1 The Incompressible Limit
27(1)
2.4.2 Electron MHD
28(1)
2.4.3 Ideal MHD
28(1)
2.5 Examples of Electrically Conducting Fluids
29(3)
3 Conservation Laws
32(17)
3.1 Mass
32(1)
3.2 Momentum
33(1)
3.3 Energy
34(2)
3.4 Cross-helicity
36(2)
3.5 Magnetic Helicity
38(1)
3.6 Alfven's Theorem
39(3)
3.6.1 Magnetic Flux Conservation
39(1)
3.6.2 Kelvin's Theorem
40(1)
3.6.3 Alfven's Theorem
41(1)
3.7 Magnetic Topology
42(3)
3.8 Topology at Sub-ion Scales
45(4)
Exercises for Part I
47(2)
Part II Fundamental Processes
49(62)
4 Magnetohydrodynamic Waves
51(14)
4.1 Magnetic Tension
51(2)
4.2 Alfven Waves
53(2)
4.3 Magnetosonic Waves
55(3)
4.4 Whistler, Ion-Cyclotron, and Kinetic Alfven Waves
58(7)
4.4.1 Incompressible Helical Waves
58(3)
4.4.2 Compressible Hall MHD Waves
61(4)
5 Dynamos
65(21)
5.1 Geophysics, Astrophysics, and Experiments
65(8)
5.1.1 Experimental Dynamos
65(5)
5.1.2 Natural Dynamos
70(3)
5.2 The Critical Magnetic Reynolds Number
73(1)
5.3 The Kinematic Regime
74(2)
5.4 Anti-dynamo Theorems
76(3)
5.5 The Ponomarenko Dynamo
79(4)
5.6 The Turbulent Dynamo
83(2)
5.6.1 Kinematic Mean Field Theory
83(1)
5.6.2 The α-effect
84(1)
5.7 Conclusion
85(1)
6 Discontinuities and Shocks
86(10)
6.1 Rankine--Hugoniot Conditions
86(5)
6.2 Discontinuities
91(3)
6.2.1 Tangential and Contact Discontinuities
92(1)
6.2.2 Rotational Discontinuity
92(2)
6.3 Shocks
94(1)
6.3.1 Intermediate Shocks
94(1)
6.3.2 True Shock
94(1)
6.4 Collisionless Shocks
94(2)
7 Magnetic Reconnection
96(15)
7.1 A Current Sheet in Ideal MHD
96(3)
7.2 The Sweet--Parker Model
99(4)
7.3 Collisionless Hall MHD Reconnection
103(1)
7.4 Perspectives
104(7)
Exercises for Part II
107(4)
Part III Instabilities and Magnetic Confinement
111(60)
8 Static Equilibrium
113(12)
8.1 Equilibrium Equations
113(1)
8.2 Magnetic Confinement by θ-Pinch
114(2)
8.3 Magnetic Confinement by z-Pinch
116(1)
8.4 Toroidal Tokamak Configuration
117(5)
8.4.1 The Grad--Shafranov Equation
118(3)
8.4.2 The Soloviev Exact Solution
121(1)
8.5 Force-Free Fields
122(3)
9 Linear Perturbation Theory
125(14)
9.1 Instabilities
125(2)
9.1.1 Classification
125(1)
9.1.2 Condition of Existence
126(1)
9.2 Kinetic Versus Fluid
127(2)
9.2.1 The Kinetic Approach
127(1)
9.2.2 The Fluid Approach
128(1)
9.3 The Energy Stability Criterion
129(4)
9.3.1 A One-Dimensional Example
129(2)
9.3.2 Two-Dimensional Examples
131(1)
9.3.3 The MHD Case
132(1)
9.4 Perturbation Theory
133(2)
9.4.1 The Small-Displacement Operator
133(2)
94.2 Solution to Initial Values
135(4)
9.4.3 The Equation of the Normal Modes
136(1)
9.4.4 Properties of the Operator F
136(2)
9.4.5 The Return on the Energy Integral
138(1)
10 Study of MHD Instabilities
139(32)
10.1 Stability of MHD Waves
139(4)
10.1.1 Alfven Waves
140(1)
10.1.2 Magnetosonic Waves
141(2)
10.2 Rayleigh-Taylor Instability
143(3)
10.2.1 The First Method: Energy Integrals
143(1)
10.2.2 The Second Method: Normal Modes
144(2)
10.3 Kruskal--Schwarzschild Instability
146(6)
10.4 z-Pinch Instability
152(8)
10.4.1 Static Equilibrium
152(2)
10.4.2 Instability Modes
154(1)
10.4.3 Resolution by Normal Modes (Case m = 0)
155(5)
10.4.4 Configuration m = 1
160(1)
10.5 z-θ Pinch Instability
160(1)
10.6 Magneto-rotational Instability in Accretion Disks
161(10)
Exercise for Part III
168(3)
Part IV Turbulence
171(72)
11 Hydrodynamic Turbulence
173(23)
11.1 What is Turbulence?
173(4)
11.1.1 Unpredictability and Turbulence
173(3)
11.1.2 Transition to Turbulence
176(1)
11.2 Statistical Tools and Symmetries
177(5)
11.2.1 Ensemble Average
177(2)
11.2.2 Autocorrelation
179(1)
11.2.3 Probability Distribution and PDF
179(1)
11.2.4 Moments and Cumulants
180(1)
11.2.5 Structure Functions
181(1)
11.2.6 Symmetries
181(1)
11.3 The Exact laws of Kolmogorov
182(6)
11.3.1 The Karman--Howarth Equations
182(2)
11.3.2 Anomalous Dissipation and Cascade
184(2)
11.3.3 The Four-Thirds and Four-Fifths Exact Laws
186(2)
11.4 Kolmogorov Phenomenology
188(2)
11.5 Intermittency
190(2)
11.6 The Spectral Approach
192(4)
11.6.1 The Spectral Tensor
192(1)
11.6.2 The Energy Spectrum
193(1)
11.6.3 The Kolmogorov k-5/3 Spectrum
194(2)
12 MHD Turbulence
196(26)
12.1 From Astrophysics to Tokamaks
196(5)
12.1.1 Solar Wind
196(2)
12.1.2 The Sun
198(1)
12.1.3 The Interstellar Medium
199(2)
12.1.4 Tokamaks
201(1)
12.2 Exact Laws
201(3)
12.2.1 Four-Thirds Law
201(2)
12.2.2 Elsasser Variables and Exact Non-linear Solution
203(1)
12.2.3 Return to the Four-Thirds Law
204(1)
12.3 Iroshnikov--Kraichnan Phenomenology
204(3)
12.3.1 Alfven Wave-Packets
204(1)
12.3.2 The Energy Spectrum in k-3/2
205(2)
12.4 Intermittency
207(2)
12.5 Magnetic Helicity and Inverse Cascade
209(3)
12.6 The Critical Balance Conjecture
212(3)
12.7 Phenomenology of Weak Alfven Wave Turbulence
215(2)
12.8 (Grand) Unified Phenomenology
217(1)
12.9 Hall MHD Turbulence
218(4)
12.9.1 The Four-Thirds Law and the Magnetic Spectrum
219(1)
12.9.2 Helicity Wave Turbulence
220(2)
13 Advanced MHD Turbulence
222(21)
13.1 Intermittency
222(10)
13.1.1 Fractals and Multi-fractals
222(5)
13.1.2 The Log-Normal Law
227(2)
13.1.3 The Log-Poisson Law
229(2)
13.1.4 The Log-Poisson Law for MHD
231(1)
13.2 Weak MHD Turbulence and the Closure Problem
232(11)
13.2.1 Triadic Interactions and Resonance
233(2)
13.2.2 IK Phenomenology Revisited
235(1)
13.2.3 Asymptotic Closure
235(3)
13.2.4 Exact Solutions in k-2
238(3)
Exercises for Part IV
241(2)
Appendix 1 Solutions to the Exercises 243(13)
Appendix 2 Formulary 256(3)
References 259(7)
Index 266
Sébastien Galtier is a professor of astrophysics at the Université Paris-Saclay, France. His research focusses on magnetohydrodynamic turbulence and he has published widely in the field. He was President of the French National Program in Solar Physics (CNRS) from 2010 to 2014, and is an honorary member of the prestigious Institut Universitaire de France.