Atjaunināt sīkdatņu piekrišanu
  • Formāts - EPUB+DRM
  • Cena: 116,45 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Introduction to Nuclear Engineering serves as an accompanying study guide for a complete, introductory single-semester course in nuclear engineering. It is structured for general class use, alongside fundamental nuclear physics and engineering textbooks, and it is equally suited for individual self-study. The book begins with basic modern physics with atomic and nuclear models. It goes on to cover nuclear energetics, radioactivity and decays, and binary nuclear reactions and basic fusion. Exploring basic radiation interactions with matter, the book finished by discussing nuclear reactor physics, nuclear fuel cycles, and radiation doses and hazard assessment. Each chapter highlights basic concepts, examples, problems with answers, and a final assessment.The book is intended for senior undergraduate and graduate engineering students taking Introduction to Nuclear Engineering and Nuclear Energy courses"--

Introduction to Nuclear Engineering serves as an accompanying study guide for a complete, introductory single-semester course in nuclear engineering. It is structured for general class use, alongside fundamental nuclear physics and engineering textbooks, and it is equally suited for individual self-study.

The book begins with basic modern physics with atomic and nuclear models. It goes on to cover nuclear energetics, radioactivity and decays, and binary nuclear reactions and basic fusion. Exploring basic radiation interactions with matter, the book finishes by discussing nuclear reactor physics, nuclear fuel cycles, and radiation doses and hazard assessment. Each chapter highlights basic concepts, examples, problems with answers, and a final assessment.

The book is intended for first-year undergraduate and graduate engineering students taking Nuclear Engineering and Nuclear Energy courses.



Introduction to Nuclear Engineering serves as an accompanying study guide for introductory, single-semester course in nuclear engineering. It is structured for general class use, alongside fundamental nuclear physics and engineering textbooks, and it is equally suited for individual self-study.

1. Basic Units and the Atom.
2. Basic Modern Physics.
3. Atomic and
Nuclear Models including Chart of Nuclides.
4. Nuclear Energetics IBinding
Energy and Separation Energy.
5. Nuclear Energetics IINuclear Reactions and
Q-values.
6. Radioactivity and Radioactive Decay.
7. Binary Nuclear
Reactions.
8. Radiation Interactions with Matter.
9. Neutrol Chain Reactions
and Basic Nuclear Reactor Physics.
10. Nuclear Reactors, Power, and Fuel
Cycles.
11. Radiation Doses and Hazards. Appendix I. Appendix II.
Dr. Supathorn Phongikaroon is an Engineering Foundation Professor and Nuclear Engineering Program Director in the Department of Mechanical and Nuclear Engineering at Virginia Commonwealth University (VCU). He earned his PhD and BS degrees in chemical engineering and nuclear engineering from the University of Maryland, College Park in 2001 and 1997, respectively. Prior to joining the VCU in January 2014, he held academic and research positions at the University of Idaho in Idaho Falls, ID; Idaho National Laboratory in Idaho Falls, ID; and Naval Research Laboratory, Washington, DC. During his research career, Dr. Phongikaroon established chemical and electrochemical separation of used nuclear fuel through pyroprocessing technology and extended his expertise toward reactor physics and material detection and accountability for safeguarding applications. His effort led to a strong establishment of Radiochemistry and Laser Spectroscopy Laboratories at VCU.

His work has been published in over 50 papers in peer-reviewed journals and presented at over 100 international and national conferences and workshops. He has been able to maintain continuous diverse research support from international and national programs through the Department of Energy, national laboratories, and other universities. He has been Principal Investigator and Co-Principal Investigator for more than 20 external supported projects in total of over 3.17 million dollars of external awards since joining academia in 2007. He has taught more than 30 classes in nuclear, mechanical and chemical engineering-related topics for resident students and more than 10 classes for continuing (long distance video conference) education over the last 9 years.