Atjaunināt sīkdatņu piekrišanu

Introduction to Observational Astrophysics 1st ed. 2016 [Mīkstie vāki]

  • Formāts: Paperback / softback, 204 pages, height x width: 235x155 mm, weight: 3802 g, 28 Illustrations, color; 31 Illustrations, black and white; XV, 204 p. 59 illus., 28 illus. in color., 1 Paperback / softback
  • Sērija : Undergraduate Lecture Notes in Physics
  • Izdošanas datums: 28-Nov-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319233769
  • ISBN-13: 9783319233765
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 44,74 €*
  • * Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena
  • Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena.
  • Daudzums:
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 204 pages, height x width: 235x155 mm, weight: 3802 g, 28 Illustrations, color; 31 Illustrations, black and white; XV, 204 p. 59 illus., 28 illus. in color., 1 Paperback / softback
  • Sērija : Undergraduate Lecture Notes in Physics
  • Izdošanas datums: 28-Nov-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319233769
  • ISBN-13: 9783319233765
Citas grāmatas par šo tēmu:
Observational Astrophysics follows the general outline of an astrophysics undergraduate curriculum targeting practical observing information to what will be covered at the university level. This includes the basics of optics and coordinate systems to the technical details of CCD imaging, photometry, spectography and radio astronomy. General enough to be used by students at a variety of institutions and advanced enough to be far more useful than observing guides targeted at amateurs, the author provides a comprehensive and up-to-date treatment of observational astrophysics at undergraduate level to be used with a university’s teaching telescope. The practical approach takes the reader from basic first year techniques to those required for a final year project. Using this textbook as a resource, students can easily become conversant in the practical aspects of astrophysics in the field as opposed to the classroom.
1 Introduction
1(6)
1.1 The Reader
1(1)
1.2 Required Equipment and Software
2(1)
1.3 How to Use This Book
3(1)
1.4 Introduction: Best Practice
4(3)
2 The Nature of Light
7(14)
2.1 Introduction
7(2)
2.2 The Quantum Nature of Light
9(2)
2.3 Measuring Light
11(1)
2.4 The Magnitude Scale
12(3)
2.5 Filters
15(3)
2.6 Colour
18(1)
2.7 Polarisation
19(2)
3 The Telescope
21(14)
3.1 Telescopes
21(6)
3.2 Mounts
27(2)
3.3 Eyepieces and Additional Optics
29(2)
3.4 Problems
31(4)
4 Time
35(8)
4.1 Introduction
35(2)
4.2 Solar Time
37(2)
4.3 Julian Date
39(1)
4.4 Sidereal Time
39(4)
5 Spheres and Coordinates
43(10)
5.1 Introduction
43(1)
5.2 Altitude and Azimuth
44(2)
5.3 Equatorial
46(2)
5.4 Galactic Coordinates
48(1)
5.5 Other Minor System
49(1)
5.6 Spherical Geometry
49(4)
6 Catalogues and Constellations
53(14)
6.1 Introduction
53(1)
6.2 Constellations, Asterisms and Bright Stars
53(3)
6.3 Catalogues
56(7)
6.4 Databases
63(4)
7 The Astronomical Detector
67(24)
7.1 The Detector
67(2)
7.2 Noise and Uncertainty in CCD
69(3)
7.3 Binning and Sub-framing
72(1)
7.4 The FITS File Format
73(1)
7.5 Calibration Frames
74(9)
7.5.1 Practical 1: The Bias and Dark Frames
78(2)
7.5.2 Practical 2: Flat Frames
80(3)
7.6 Linearity of CCD
83(2)
7.6.1 Practical 3: Measuring CCD Linearity
84(1)
7.7 Bad Pixels and Cosmic Rays
85(1)
7.7.1 Practical 4: Bad Pixels and Cosmic Rays
86(1)
7.8 Gain
86(2)
7.8.1 Practical 5: Measuring Camera Gain
87(1)
7.9 Saturation, Blooming and Other Effects
88(3)
8 Imaging
91(28)
8.1 Introduction
91(1)
8.2 Planning
92(2)
8.3 In Dome Pre-observation Preparation
94(6)
8.3.1 Calibration Frames
94(3)
8.3.2 Pointing
97(1)
8.3.3 Focusing
98(2)
8.4 Guiding
100(1)
8.5 Target Specific Problems
101(9)
8.5.1 Imaging Open Clusters
102(3)
8.5.2 Imaging Globular Clusters
105(2)
8.5.3 Imaging Galaxies
107(1)
8.5.4 Planetary and Emission and Dark Nebulae
108(2)
8.6 Stacking and Dithering
110(1)
8.7 Practical 6: The Messier Marathon
111(4)
8.7.1 Aims
111(1)
8.7.2 Planning
111(1)
8.7.3 Getting Ready
112(1)
8.7.4 Imaging
113(1)
8.7.5 Shutdown
114(1)
8.7.6 Post Imaging
114(1)
8.7.7 Analysis
115(1)
8.8 Planetary Imaging
115(1)
8.8.1 Lucky Imaging
116(1)
8.9 Practical 7: The Speed of Light
116(3)
8.9.1 Aims
117(1)
8.9.2 Planning
117(1)
8.9.3 Observing
117(1)
8.9.4 Analysis
118(1)
9 Image Reduction and Processing
119(10)
9.1 Introduction
119(3)
9.1.1 Calibration
120(1)
9.1.2 Stacking
120(2)
9.2 Stretching the Curve
122(7)
9.2.1 From Grey Scale to Colour
125(2)
9.2.2 Image Filtering
127(2)
10 Photometry
129(16)
10.1 Introduction
129(2)
10.2 Measuring
131(5)
10.2.1 Aperture Photometry
131(2)
10.2.2 Photometric Reductions
133(3)
10.3 Practical: Find the Zero Point and Transformations
136(4)
10.3.1 Aims
136(1)
10.3.2 Preparation
136(1)
10.3.3 Imaging
137(1)
10.3.4 Photometry
137(1)
10.3.5 Reduction
138(2)
10.3.6 Analysis
140(1)
10.4 Differential Photometry
140(2)
10.5 Practical: Constructing an HR Diagram of an Open Cluster
142(3)
10.5.1 Aims
142(1)
10.5.2 Observing
142(1)
10.5.3 Reduction
143(1)
10.5.4 Analysis
143(2)
11 Errors
145(8)
11.1 Introduction
145(2)
11.2 Handling Errors
147(6)
11.2.1 Systemic Errors
148(1)
11.2.2 Random Errors
149(1)
11.2.3 Working Out the Error Value
150(1)
11.2.4 Propagation of Uncertainties
151(2)
12 Solar Astronomy
153(10)
12.1 Introduction
153(1)
12.2 Solar Features
154(5)
12.2.1 Sunspots
154(1)
12.2.2 Faculae
155(1)
12.2.3 Granules
155(2)
12.2.4 Plage
157(1)
12.2.5 Filament
157(1)
12.2.6 Prominences, Filaments and Flares
157(2)
12.3 Observing the Sun
159(1)
12.4 Practical 9: Exploring the Physics of the Sun
160(3)
12.4.1 Aims
161(1)
12.4.2 Planning
161(1)
12.4.3 Observing
161(1)
12.4.4 Analysis
162(1)
13 Spectrography
163(8)
13.1 Introduction
163(1)
13.2 The Spectrograph
163(3)
13.3 Taking and Reducing Spectra
166(1)
13.4 Practical: 10 Methane in the Atmosphere of Neptune
167(4)
13.4.1 Aims
168(1)
13.4.2 Preparation
168(1)
13.4.3 Imaging
168(1)
13.4.4 Reducation
169(1)
13.4.5 Anaylsis
169(2)
14 Radio Astronomy
171(12)
14.1 Introduction
171(1)
14.2 Instrument Background
172(3)
14.3 Radio Practicals
175(8)
14.3.1 Mapping the Milky Way at 21 cm
176(3)
14.3.2 Radio Meteor Counting
179(2)
14.3.3 Radio Emission from Jupiter
181(2)
15 Astrometry
183(6)
15.1 Introduction
183(1)
15.2 The Proper Motion of Asteroids
184(5)
Glossary 189(8)
Further Reading 197(2)
Index 199
Dr. Mark Gallaway holds an undergraduate honors degree in Physical Science from the Open University and a PhD in Astrophysics from the University of Hertfordshire, UK (one of the largest astrophysics research groups in the UK). He has taught observational astrophysics at the University of Hertfordshires Bayfordbury Observatory (the largest such observatory in the UK and one of the largest robotic observatories in Europe) for three years, continuing to do so after he became the Observatory Manager in 2011.

During his current tenure Dr. Gallaway has overseen both a large increase in student numbers and a refocusing of the observatory to one of the UKs leading small telescope research facilities. He is currently the PI of the Bayfordbury Supernova Search program, the Bayfordbury SuperWasp CV (Cataclysmic Variable) Follow-up program and the Bayfordbury NEO (Near Earth Object) Search. Dr. Gallaway is also a lead member of the M-Dwarf transit survey.

He regularly appears on the BBC and other UK national broadcasters both as an expert. Furthermore, Dr. Gallaway has consulted on a number of general science programs in including the BBC documentary  How Satellites Rule Our Lives and the series How dangerous is.?