Atjaunināt sīkdatņu piekrišanu

Introduction to OFDM Receiver Design and Simulation [Hardback]

  • Formāts: Hardback, 273 pages
  • Izdošanas datums: 30-Nov-2019
  • Izdevniecība: Artech House Publishers
  • ISBN-10: 1630817384
  • ISBN-13: 9781630817381
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 182,16 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 273 pages
  • Izdošanas datums: 30-Nov-2019
  • Izdevniecība: Artech House Publishers
  • ISBN-10: 1630817384
  • ISBN-13: 9781630817381
Citas grāmatas par šo tēmu:
This practical book is an accessible introduction to Orthogonal frequency-division multiplexing (OFDM) receiver design, a technology that allows digitized data to be carried by multiple carriers. It offers a detailed simulation study of an OFDM algorithm for Wi-Fi and 4G cellular that can be used to understand other OFDM waveforms. Wi-Fi digital communications are based on several IEEE 802.11 standards. Extensive simulation studies are included using the transmission waveform given by the IEEE 802.11a standard.

Shift register sequence for the scrambler, block codes, cyclic codes and convolutional codes are presented. Punctured convolutional codes for error corrections, large scale and small-scale propagation model are also included. Detailed derivations leading to the final formula for any algorithm are given, which allows the reader to clearly understand the approximations and conditions behind the formulas and apply them appropriately.
Preface xv
1 Discrete Time Signals and Discrete Fourier Transform 1(18)
1.1 Introduction
1(1)
1.2 Discrete Time Signals
2(1)
1.3 Fourier Series Representation
2(3)
1.4 DFT
5(2)
1.5 Sampling Theorem and Signal Interpolation
7(1)
1.6 Properties of the DFT
8(2)
1.7 Time and Frequency Relationship of the DFT
10(2)
1.8 Operations of the DFT
12(2)
1.8.1 Linearity
12(1)
1.8.2 Time Shift
12(1)
1.8.3 Frequency Shift
13(1)
1.8.4 Circular Convolution
13(1)
1.9 Z-Transform
14(2)
1.10 Summary
16(1)
References
17(2)
2 Single-Carrier Modulation 19(14)
2.1 Introduction
19(1)
2.2 Data Transmission Rate
19(1)
2.3 Bandpass Signals
20(1)
2.4 Digitally Modulated Signals
21(6)
2.4.1 PAM
22(1)
2.4.2 PSK
22(2)
2.4.3 QAM
24(2)
2.4.4 FSK
26(1)
2.5 Pulse Shaping
27(3)
2.6 Summary
30(1)
References
31(2)
3 Multicarrier Modulation 33(16)
3.1 Introduction
33(1)
3.2 OFDM Waveform
34(1)
3.3 OFDM Characteristics
35(6)
3.3.1 Orthogonality
35(1)
3.3.2 OFDM Spectrum
36(1)
3.3.3 PAPR
37(2)
3.3.4 Cyclic Prefix
39(1)
3.3.5 FFT
40(1)
3.4 Time and Frequency Parameters
41(1)
3.5 Window Function
42(2)
3.6 Digital Modulation
44(1)
3.7 OFDM Waveform Properties
45(1)
3.8 Summary
46(1)
References
47(2)
4 OFDM Transmission 49(12)
4.1 Introduction
49(1)
4.2 OFDM Transmitter Architecture
49(1)
4.3 Signal Transmission Format
50(1)
4.4 Preamble Signal for IEEE 802.11a
51(5)
4.4.1 Short Sequence
52(2)
4.4.2 Long Sequence
54(2)
4.5 IEEE 802.11a Header Format
56(2)
4.6 IEEE 802.11a Data Format
58(1)
4.7 OFDM Receiver Architecture
58(1)
4.8 Summary
59(1)
Reference
60(1)
5 Shift Register Sequence and Data Scrambler 61(16)
5.1 Introduction
61(1)
5.2 Binary Field
62(2)
5.3 Galois Field
64(2)
5.4 Sequence Generator
66(4)
5.5 Period of Sequence Generator
70(2)
5.6 Maximum-Length Sequences
72(2)
5.6.1 Properties of the Maximum-Length Sequence
72(1)
5.6.2 Sequence Generator from the IEEE 802.11a
73(1)
5.7 Data Scrambler
74(1)
5.8 Summary
75(1)
References
76(1)
6 Radio-Wave Propagation Model 77(24)
6.1 Introduction
77(1)
6.2 Large-Scale Propagation Model
78(5)
6.2.1 Free-Space Propagation Loss
78(2)
6.2.2 Two-Ray Model
80(1)
6.2.3 Empirical Model
81(2)
6.3 Small-Scale Propagation Model
83(8)
6.3.1 Time Dispersion
84(2)
6.3.2 Frequency Dispersion
86(3)
6.3.3 Clark's Fading Model
89(2)
6.4 Receiver Signal-to-Noise Ratio (SNR)
91(5)
6.4.1 Thermal Noise
91(1)
6.4.2 Noise Factor
92(1)
6.4.3 Amplifier Model
92(1)
6.4.4 Cable Loss Model
93(1)
6.4.5 Equivalent Noise Temperature at Receiver Front End
94(2)
6.5 Range Determination
96(2)
6.6 SNR
98(1)
6.7 Summary
98(2)
References
100(1)
7 Error-Correcting Codes and Interleaver 101(32)
7.1 Introduction
101(1)
7.2 Linear Block Codes
102(6)
7.2.1 Generator Matrix
102(2)
7.2.2 Parity Check Matrix
104(1)
7.2.3 Syndrome
105(1)
7.2.4 Error Correction
106(1)
7.2.5 Hamming Codes
107(1)
7.3 Cyclic Codes
108(5)
7.3.1 Generator Polynomial
108(4)
7.3.2 Syndrome Polynomial
112(1)
7.4 Convolutional Code
113(13)
7.4.1 Convolutional Encoder
114(3)
7.4.2 Convolutional Decoder and Viterbi Algorithm
117(5)
7.4.3 Convolutional Code in the IEEE 802.11a
122(2)
7.4.4 Punctured Convolutional Codes
124(2)
7.5 Interleaver
126(3)
7.5.1 Illustration of an Interleaver
126(1)
7.5.2 Interleaver Used in the IEEE 802.11a
127(2)
7.5.3 Deinterleaver Used in the IEEE 802.11a
129(1)
7.6 Summary
129(2)
References
131(2)
8 Signal Acquisition 133(20)
8.1 Introduction
133(1)
8.2 Direct Conversion to IQ Components
134(2)
8.3 Detection Metric
136(3)
8.3.1 Cross-Correlation
137(1)
8.3.2 MMSE Metric
137(1)
8.3.3 Normalized Cross-Correlation
138(1)
8.4 Maximum Likelihood Detection
139(1)
8.5 Coarse Timing Detection
140(7)
8.5.1 Segment Detection
140(4)
8.5.2 Sample Detection
144(3)
8.6 Fine Timing Detection
147(3)
8.7 Summary
150(1)
References
151(2)
9 Synchronization 153(42)
9.1 Introduction
153(1)
9.2 DC Offset
154(6)
9.2.1 Algorithm Analysis
154(3)
9.2.2 Simulation Examples
157(3)
9.3 CFO
160(8)
9.3.1 Algorithm Analysis
160(3)
9.3.2 Simulation Examples
163(5)
9.4 Frame Timing Offset
168(1)
9.5 SCO
169(11)
9.5.1 Algorithm Development
169(3)
9.5.2 Lease Square Estimation in the Tracking Mode
172(3)
9.5.3 Estimation in the Acquisition Mode
175(1)
9.5.4 Estimation Under Special Conditions
176(2)
9.5.5 Simulation Examples
178(2)
9.6 IQ Imbalance
180(11)
9.6.1 IQ Model
182(1)
9.6.2 Estimation in the Acquisition Mode
183(3)
9.6.3 Compensation of IQ Imbalance
186(1)
9.6.4 Simulation Examples
186(5)
9.7 Summary
191(1)
References
192(3)
10 Channel Estimation and Tracking 195(26)
10.1 Introduction
195(1)
10.2 Pilot Patterns
196(3)
10.2.1 Block-Type Pilot Pattern
196(2)
10.2.2 Comb Type Pilot Pattern
198(1)
10.3 Channel Estimation
199(12)
10.3.1 Channel Estimation for the Block-Type Pilot Pattern
199(2)
10.3.2 Channel Estimation for Comb Type Pilot Pattern
201(10)
10.4 Channel Tracking
211(7)
10.4.1 The LMS Algorithm
211(2)
10.4.2 The Condition for Convergence
213(2)
10.4.3 Examples
215(3)
10.5 Summary
218(1)
References
218(3)
11 Data Decoding 221(18)
11.1 Introduction
221(1)
11.2 Demodulation
222(1)
11.3 Hard Decision Decoding
222(11)
11.3.1 Conventional Demapper
222(2)
11.3.2 Simplified Demapper
224(9)
11.3.3 Deinterleaver and Viterbi Decoding
233(1)
11.3.4 Descrambler
233(1)
11.4 Soft Decision Decoding
233(3)
11.4.1 Transmitter and Receiver Block Diagram
233(2)
11.4.2 Soft Decoding Using the Euclidean Distance
235(1)
11.4.3 Soft Decoding Using LLR
235(1)
11.4.4 Further Decoding Process
236(1)
11.5 Summary
236(1)
References
237(2)
12 Simulation Study of a Multipath Channel on OFDM 239(14)
12.1 Introduction
239(1)
12.2 Characterization of Multipath Channel
240(2)
12.3 Computation of SNR
242(1)
12.4 Transmitter Architecture for Simulation
243(1)
12.5 Receiver Architecture for Simulation
244(1)
12.6 Simulation Studies
244(1)
12.6.1 Performance over AWGN
244(7)
12.6.2 Performance over a Multipath Channel
247(4)
12.7 Summary
251(1)
Reference
252(1)
About the Author 253(2)
Index 255
Y.J. Liu was a staff scientist at ITT Exelis. He received his Electrical Engineering B.S. from the National Taiwan University, his M.S. from the University of Rochester and his Ph.D. from the Ohio State University. He has also had many papers published and patents awarded.