Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Petroleum Engineering

3.86/5 (14 ratings by Goodreads)
  • Formāts: PDF+DRM
  • Izdošanas datums: 13-Sep-2016
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119193647
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 107,01 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 13-Sep-2016
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119193647
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Presents key concepts and terminology for a multidisciplinary range of topics in petroleum engineering
  • Places oil and gas production in the global energy context
  • Introduces all of the key concepts that are needed to understand oil and gas production from exploration through abandonment
  • Reviews fundamental terminology and concepts from geology, geophysics, petrophysics, drilling, production and reservoir engineering
  • Includes many worked practical examples within each chapter and exercises at the end of each chapter highlight and reinforce material in the chapter
  • Includes a solutions manual for academic adopters
About the Authors xiii
Preface xv
About the Companion Website xvi
1 Introduction
1(22)
1.1 What is Petroleum Engineering?
1(5)
1.1.1 Alternative Energy Opportunities
3(1)
1.1.2 Oil and Gas Units
3(1)
1.1.3 Production Performance Ratios
4(1)
1.1.4 Classification of Oil and Gas
4(2)
1.2 Life Cycle of a Reservoir
6(3)
1.3 Reservoir Management
9(2)
1.3.1 Recovery Efficiency
9(2)
1.4 Petroleum Economics
11(5)
1.4.1 The Price of Oil
14(1)
1.4.2 How Does Oil Price Affect Oil Recovery?
14(1)
1.4.3 How High Can Oil Prices Go?
15(1)
1.5 Petroleum and the Environment
16(4)
1.5.1 Anthropogenic Climate Change
16(3)
1.5.2 Environmental Issues
19(1)
1.6 Activities
20(3)
1.6.1 Further Reading
20(1)
1.6.2 True/False
21(1)
1.6.3 Exercises
21(2)
2 The Future of Energy
23(22)
2.1 Global Oil and Gas Production and Consumption
23(1)
2.2 Resources and Reserves
24(5)
2.2.1 Reserves
27(2)
2.3 Oil and Gas Resources
29(5)
2.3.1 Coal Gas
29(2)
2.3.2 Gas Hydrates
31(1)
2.3.3 Tight Gas Sands, Shale Gas, and Shale Oil
31(2)
2.3.4 Tar Sands
33(1)
2.4 Global Distribution of Oil and Gas Reserves
34(2)
2.5 Peak Oil
36(3)
2.5.1 World Oil Production Rate Peak
37(1)
2.5.2 World Per Capita Oil Production Rate Peak
37(2)
2.6 Future Energy Options
39(3)
2.6.1 Goldilocks Policy for Energy Transition
39(3)
2.7 Activities
42(3)
2.7.1 Further Reading
42(1)
2.7.2 True/False
42(1)
2.7.3 Exercises
42(3)
3 Properties of Reservoir Fluids
45(22)
3.1 Origin
45(2)
3.2 Classification
47(4)
3.3 Definitions
51(3)
3.4 Gas Properties
54(1)
3.5 Oil Properties
55(5)
3.6 Water Properties
60(1)
3.7 Sources of Fluid Data
61(2)
3.7.1 Constant Composition Expansion
61(1)
3.7.2 Differential Liberation
62(1)
3.7.3 Separator Test
62(1)
3.8 Applications of Fluid Properties
63(1)
3.9 Activities
64(3)
3.9.1 Further Reading
64(1)
3.9.2 True/False
64(1)
3.9.3 Exercises
64(3)
4 Properties of Reservoir Rock
67(16)
4.1 Porosity
67(4)
4.1.1 Compressibility of Pore Volume
69(1)
4.1.2 Saturation
70(1)
4.1.3 Volumetric Analysis
71(1)
4.2 Permeability
71(5)
4.2.1 Pressure Dependence of Permeability
73(1)
4.2.2 Superficial Velocity and Interstitial Velocity
74(1)
4.2.3 Radial Flow of Liquids
74(1)
4.2.4 Radial Flow of Gases
75(1)
4.3 Reservoir Heterogeneity and Permeability
76(3)
4.3.1 Parallel Configuration
76(1)
4.3.2 Series Configuration
76(1)
4.3.3 Dykstra--Parsons Coefficient
77(2)
4.4 Directional Permeability
79(1)
4.5 Activities
80(3)
4.5.1 Further Reading
80(1)
4.5.2 True/False
80(1)
4.5.3 Exercises
80(3)
5 Multiphase Flow
83(18)
5.1 Interfacial Tension, Wettability, and Capillary Pressure
83(3)
5.2 Fluid Distribution and Capillary Pressure
86(2)
5.3 Relative Permeability
88(2)
5.4 Mobility and Fractional Flow
90(1)
5.5 One-dimensional Water-oil Displacement
91(4)
5.6 Well Productivity
95(2)
5.7 Activities
97(4)
5.7.1 Further Reading
97(1)
5.7.2 True/False
97(1)
5.7.3 Exercises
98(3)
6 Petroleum Geology
101(18)
6.1 Geologic History of the Earth
101(6)
6.1.1 Formation of the Rocky Mountains
106(1)
6.2 Rocks and Formations
107(4)
6.2.1 Formations
108(3)
6.3 Sedimentary Basins and Traps
111(1)
6.3.1 Traps
111(1)
6.4 What Do You Need to form a Hydrocarbon Reservoir?
112(1)
6.5 Volumetric Analysis, Recovery Factor, and EUR
113(2)
6.5.1 Volumetric Oil in Place
114(1)
6.5.2 Volumetric Gas in Place
114(1)
6.5.3 Recovery Factor and Estimated Ultimate Recovery
115(1)
6.6 Activities
115(4)
6.6.1 Further Reading
115(1)
6.6.2 True/False
116(1)
6.6.3 Exercises
116(3)
7 Reservoir Geophysics
119(18)
7.1 Seismic Waves
119(5)
7.1.1 Earthquake Magnitude
122(2)
7.2 Acoustic Impedance and Reflection Coefficients
124(2)
7.3 Seismic Resolution
126(3)
7.3.1 Vertical Resolution
126(1)
7.3.2 Lateral Resolution
127(1)
7.3.3 Exploration Geophysics and Reservoir Geophysics
128(1)
7.4 Seismic Data Acquisition, Processing, and Interpretation
129(2)
7.4.1 Data Acquisition
129(1)
7.4.2 Data Processing
130(1)
7.4.3 Data Interpretation
130(1)
7.5 Petroelastic Model
131(2)
7.5.1 IFM Velocities
131(1)
7.5.2 IFM Moduli
132(1)
7.6 Geomechanical Model
133(2)
7.7 Activities
135(2)
7.7.1 Further Reading
135(1)
7.7.2 True/False
135(1)
7.7.3 Exercises
135(2)
8 Drilling
137(24)
8.1 Drilling Rights
137(1)
8.2 Rotary Drilling Rigs
138(11)
8.2.1 Power Systems
139(2)
8.2.2 Hoisting System
141(1)
8.2.3 Rotation System
141(2)
8.2.4 Drill String and Bits
143(3)
8.2.5 Circulation System
146(2)
8.2.6 Well Control System
148(1)
8.3 The Drilling Process
149(6)
8.3.1 Planning
149(1)
8.3.2 Site Preparation
150(1)
8.3.3 Drilling
151(1)
8.3.4 Open-Hole Logging
152(1)
8.3.5 Setting Production Casing
153(2)
8.4 Types of Wells
155(3)
8.4.1 Well Spacing and Infill Drilling
155(1)
8.4.2 Directional Wells
156(2)
8.4.3 Extended Reach Drilling
158(1)
8.5 Activities
158(3)
8.5.1 Further Reading
158(1)
8.5.2 True/False
158(1)
8.5.3 Exercises
159(2)
9 Well Logging
161(24)
9.1 Logging Environment
161(3)
9.1.1 Wellbore and Formation
162(1)
9.1.2 Open or Cased?
163(1)
9.1.3 Depth of Investigation
164(1)
9.2 Lithology Logs
164(3)
9.2.1 Gamma-Ray Logs
164(1)
9.2.2 Spontaneous Potential Logs
165(2)
9.2.3 Photoelectric Log
167(1)
9.3 Porosity Logs
167(3)
9.3.1 Density Logs
167(1)
9.3.2 Acoustic Logs
168(1)
9.3.3 Neutron Logs
169(1)
9.4 Resistivity Logs
170(4)
9.5 Other Types of Logs
174(1)
9.5.1 Borehole Imaging
174(1)
9.5.2 Spectral Gamma-Ray Logs
174(1)
9.5.3 Dipmeter Logs
174(1)
9.6 Log Calibration with Formation Samples
175(1)
9.6.1 Mud Logs
175(1)
9.6.2 Whole Core
175(1)
9.6.3 Sidewall Core
176(1)
9.7 Measurement While Drilling and Logging While Drilling
176(1)
9.8 Reservoir Characterization Issues
177(5)
9.8.1 Well Log Legacy
177(1)
9.8.2 Cutoffs
177(1)
9.8.3 Cross-Plots
178(1)
9.8.4 Continuity of Formations between Wells
178(1)
9.8.5 Log Suites
179(1)
9.8.6 Scales of Reservoir Information
180(2)
9.9 Activities
182(3)
9.9.1 Further Reading
182(1)
9.9.2 True/False
182(1)
9.9.3 Exercises
182(3)
10 Well Completions
185(20)
10.1 Skin
186(2)
10.2 Production Casing and Liners
188(1)
10.3 Perforating
189(3)
10.4 Acidizing
192(1)
10.5 Hydraulic Fracturing
193(9)
10.5.1 Horizontal Wells
201(1)
10.6 Wellbore and Surface Hardware
202(1)
10.7 Activities
203(2)
10.7.1 Further Reading
203(1)
10.7.2 True/False
203(1)
10.7.3 Exercises
204(1)
11 Upstream Facilities
205(22)
11.1 Onshore Facilities
205(3)
11.2 Flash Calculation for Separators
208(3)
11.3 Pressure Rating for Separators
211(2)
11.4 Single-Phase Flow in Pipe
213(3)
11.5 Multiphase Flow in Pipe
216(2)
11.5.1 Modeling Multiphase Flow in Pipes
217(1)
11.6 Well Patterns
218(3)
11.6.1 Intelligent Wells and Intelligent Fields
219(2)
11.7 Offshore Facilities
221(3)
11.8 Urban Operations: The Barnett Shale
224(1)
11.9 Activities
225(2)
11.9.1 Further Reading
225(1)
11.9.2 True/False
225(1)
11.9.3 Exercises
225(2)
12 Transient Well Testing
227(22)
12.1 Pressure Transient Testing
227(2)
12.1.1 Flow Regimes
228(1)
12.1.2 Types of Pressure Transient Tests
228(1)
12.2 Oil Well Pressure Transient Testing
229(8)
12.2.1 Pressure Buildup Test
232(3)
12.2.2 Interpreting Pressure Transient Tests
235(2)
12.2.3 Radius of Investigation of a Liquid Well
237(1)
12.3 Gas Well Pressure Transient Testing
237(5)
12.3.1 Diffusivity Equation
238(1)
12.3.2 Pressure Buildup Test in a Gas Well
238(1)
12.3.3 Radius of Investigation
239(1)
12.3.4 Pressure Drawdown Test and the Reservoir Limit Test
240(1)
12.3.5 Rate Transient Analysis
241(1)
12.3.6 Two-Rate Test
242(1)
12.4 Gas Well Deliverability
242(4)
12.4.1 The SBA Method
244(1)
12.4.2 The LIT Method
245(1)
12.5 Summary of Transient Well Testing
246(1)
12.6 Activities
246(3)
12.6.1 Further Reading
246(1)
12.6.2 True/False
246(1)
12.6.3 Exercises
247(2)
13 Production Performance
249(22)
13.1 Field Performance Data
249(2)
13.1.1 Bubble Mapping
250(1)
13.2 Decline Curve Analysis
251(3)
13.2.1 Alternative DCA Models
253(1)
13.3 Probabilistic DCA
254(2)
13.4 Oil Reservoir Material Balance
256(5)
13.4.1 Undersaturated Oil Reservoir with Water Influx
257(1)
13.4.2 Schilthuis Material Balance Equation
258(3)
13.5 Gas Reservoir Material Balance
261(2)
13.5.1 Depletion Drive Gas Reservoir
262(1)
13.6 Depletion Drive Mechanisms and Recovery Efficiencies
263(3)
13.7 Inflow Performance Relationships
266(1)
13.8 Activities
267(4)
13.8.1 Further Reading
267(1)
13.8.2 True/False
267(1)
13.8.3 Exercises
268(3)
14 Reservoir Performance
271(20)
14.1 Reservoir Flow Simulators
271(3)
14.1.1 Flow Units
272(1)
14.1.2 Reservoir Characterization Using Flow Units
272(2)
14.2 Reservoir Flow Modeling Workflows
274(2)
14.3 Performance of Conventional Oil and Gas Reservoirs
276(4)
14.3.1 Wilmington Field, California: Immiscible Displacement by Water Flooding
277(1)
14.3.2 Prudhoe Bay Field, Alaska: Water Flood, Gas Cycling, and Miscible Gas Injection
278(2)
14.4 Performance of an Unconventional Reservoir
280(5)
14.4.1 Barnett Shale, Texas: Shale Gas Production
280(5)
14.5 Performance of Geothermal Reservoirs
285(2)
14.6 Activities
287(4)
14.6.1 Further Reading
287(1)
14.6.2 True/False
287(1)
14.6.3 Exercises
288(3)
15 Midstream and Downstream Operations
291(22)
15.1 The Midstream Sector
291(3)
15.2 The Downstream Sector: Refineries
294(6)
15.2.1 Separation
295(4)
15.2.2 Conversion
299(1)
15.2.3 Purification
300(1)
15.2.4 Refinery Maintenance
300(1)
15.3 The Downstream Sector: Natural Gas Processing Plants
300(1)
15.4 Sakhalin-2 Project, Sakhalin Island, Russia
301(9)
15.4.1 History of Sakhalin Island
302(4)
15.4.2 The Sakhalin-2 Project
306(4)
15.5 Activities
310(3)
15.5.1 Further Reading
310(1)
15.5.2 True/False
310(1)
15.5.3 Exercises
311(2)
Appendix Unit Conversion Factors 313(4)
References 317(10)
Index 327
John R. Fanchi holds the Ross B. Matthews Chair of Petroleum Engineering at Texas Christian University in Fort Worth, Texas. He has taught at the Colorado School of Mines, and has industrial experience with major oil and gas companies including Chevron and Marathon. He is a Distinguished Member of the Society of Petroleum Engineers.

Richard L. Christiansen has taught Petroleum Engineering at the University of Utah and Colorado School of Mines. He has broad industrial experience as a petroleum engineer in independent and major oil and gas companies. He has a Ph.D. in chemical engineering from the University of Wisconsin.