Atjaunināt sīkdatņu piekrišanu

Introduction to Pharmaceutical Biotechnology, Volume 1: Basic techniques and concepts [Hardback]

(Acharya & BM Reddy College of Pharmacy, India), (BM Reddy College of Pharmacy, India)
  • Formāts: Hardback, 320 pages, height x width x depth: 254x178x19 mm, weight: 773 g, With figures in colour and in black and white
  • Sērija : IOP Expanding Physics
  • Izdošanas datums: 04-May-2018
  • Izdevniecība: Institute of Physics Publishing
  • ISBN-10: 0750313005
  • ISBN-13: 9780750313001
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 131,44 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 320 pages, height x width x depth: 254x178x19 mm, weight: 773 g, With figures in colour and in black and white
  • Sērija : IOP Expanding Physics
  • Izdošanas datums: 04-May-2018
  • Izdevniecība: Institute of Physics Publishing
  • ISBN-10: 0750313005
  • ISBN-13: 9780750313001
Citas grāmatas par šo tēmu:
Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.
Preface xiv
Acknowledgments xv
Author biographies xvi
1 History, scope and development of biotechnology
1(1)
1.1 Introduction
1(4)
1.2 Branches of biotechnology
5(1)
1.3 Biotechnology and its various stages of development
6(21)
1.3.1 Old and new biotechnology
17(1)
1.3.2 Ancient biotechnology (pre-1800)
17(2)
1.3.3 Classical biotechnology
19(2)
1.3.4 Modern biotechnology
21(6)
1.4 Scope and importance of biotechnology
27(2)
1.4.1 Biotechnology in medicine
27(1)
1.4.2 Industrial biotechnology
28(1)
1.4.3 Biotechnology and the environment
29(1)
1.4.4 Biotechnology and agriculture
29(1)
1.5 Biotechnology techniques
29(5)
1.5.1 Bioreactors
29(1)
1.5.2 Cell fusion
29(2)
1.5.3 Liposome-based delivery
31(1)
1.5.4 Cell or tissue culture
32(1)
1.5.5 Genetic engineering
32(1)
1.5.6 DNA fingerprinting
32(1)
1.5.7 Cloning
32(1)
1.5.8 Artificial insemination and ET technology
33(1)
1.5.9 Stem cell technology
33(1)
1.6 Applications of biotechnology
34(13)
1.6.1 Basic applications of biotechnology
35(1)
1.6.2 Most common applications
35(12)
1.7 Biotech research: 2015-2016
47
References
57
2 Modern DNA science and its applications
1(1)
2.1 Introduction
1(2)
2.1.1 Genes: units of inheritance
1(2)
2.2 The Human Genome Project
3(1)
2.3 DNA synthesis begins at replication origins
4(1)
2.4 Gene expression
4(2)
2.4.1 One gene, one product
4(2)
2.5 Structure of DNA
6(1)
2.5.1 Basic structural features of DNA
7(1)
2.6 DNA replication
7(2)
2.6.1 Leading strand
8(1)
2.6.2 Lagging strand
9(1)
2.7 DNA supercoiling
9(1)
2.8 Repair and recombination
9(2)
2.9 Types of DNA damage
11(3)
2.9.1 Base excision repair (BER)
13(1)
2.9.2 Mismatch repair (MMR)
13(1)
2.9.3 Nucleotide excision repair (NER)
14(1)
2.9.4 Double-strand break (DSB) repair
14(1)
2.10 DNA recombination
14(2)
2.10.1 Types and examples of recombination
15(1)
2.11 DNA isolation is the commencement of molecular marker analysis
16(2)
2.11.1 DNA extraction protocols
17(1)
2.12 Types of molecular markers
18(16)
2.12.1 Hybridization-based molecular markers
18(4)
2.12.2 PCR-based markers
22(12)
2.13 Genomic library screening methods
34(10)
2.13.1 Colony hybridization
34(1)
2.13.2 Chromosome walking
35(1)
2.13.3 Blotting techniques
36(1)
2.13.4 Southern blot analysis
36(1)
2.13.5 Northern blot analysis
36(1)
2.13.6 Western blot analysis
37(1)
2.13.7 Dot blot technique
37(1)
2.13.8 Techniques for the detection of specific proteins
38(1)
2.13.9 Electrophoresis techniques
38(6)
2.14 Triplex DNA, TFOS, PNAs, RNA-DNA hybrids and DSRNA/RNAI
44(2)
2.15 Isolation, sequencing and synthesis of genes
46(8)
2.15.1 Isolation of ribosomal RNA
46(1)
2.15.2 Isolation of genes coding for specific proteins
46(1)
2.15.3 Isolation of genes (with known or unknown products) using DNA or RNA probes
47(1)
2.15.4 Isolation of genes (with known or unknown products) using DNA or RNA probes
48(1)
2.15.5 Use of transposable elements (transposon tagging)
49(1)
2.15.6 T-DNA insertion mutagenesis for isolation of plant genes
50(1)
2.15.7 Promoter, enhancer and gene trap for isolation of genes
50(1)
2.15.8 Mutation complementation
51(1)
2.15.9 Differential screening and differential display technique for isolation of genes
51(1)
2.15.10 Subtractive hybridization for gene isolation
52(1)
2.15.11 Map-based cloning for gene isolation
52(1)
2.15.12 Isolation of novel genes
52(1)
2.15.13 Sequencing of a gene or a DNA fragment
53(1)
2.16 Synthesis of genes
54(6)
2.16.1 Chemical synthesis of tRNA genes
54(2)
2.16.2 Synthesis of the gene for yeast alanyl tRNA
56(1)
2.16.3 Synthesis of a gene from true precursor tRNA
56(1)
2.16.4 Mass spectrometry for genomics and proteomics
56(4)
2.17 Genomics and proteomics research
60
References
61
3 Introduction to genetic engineering
1(1)
3.1 Introduction
1(1)
3.2 Gene transfer technologies
2(7)
3.2.1 Electroporation
2(1)
3.2.2 Microinjection
3(1)
3.2.3 Biolistics or microprojectiles for DNA transfer
3(1)
3.2.4 Liposome-mediated gene transfer
4(1)
3.2.5 Calcium-phosphate-mediated DNA transfer
4(1)
3.2.6 DNA transfer by DEAE-dextran method
5(1)
3.2.7 Transfer of DNA by polycation-DMSO
6(1)
3.2.8 Polyethylene-glycol-mediated transfection
7(1)
3.2.9 Gene transfer through peptides
7(1)
3.2.10 Gene transfer by retroviruses
8(1)
3.3 Plasmids
9(1)
3.4 Different hosts and protein expression technologies
10(5)
3.4.1 rDNA technology
12(3)
3.5 Gene cloning
15(1)
3.6 Transfection methods and transgenic animals
16(14)
3.6.1 Gene transfer or transfection
17(1)
3.6.2 Transfection of fertilized eggs or embryos
17(1)
3.6.3 Transfer of whole nuclei (or split embryos)
17(1)
3.6.4 DNA microinjection into the egg
18(1)
3.6.5 Virus-mediated gene transfer to embryo
19(1)
3.6.6 Transfection of cultured mammalian cells
20(1)
3.6.7 Targeted gene transfer
21(1)
3.6.8 Transgenic animals in biotechnology
21(9)
3.7 Applications of genetic engineering in biotechnology
30(2)
3.8 Mammalian cell line characterization
32(1)
3.9 In vitro fertilization (IVF) and embryo transfer in humans and domestic animals
33(1)
3.10 IVF in humans and embryo transfer
34(14)
3.10.1 Types and causes of infertility
34(3)
3.10.2 Evaluation and assessment of patients
37(1)
3.10.3 IVF fertility treatment
38(1)
3.10.4 Development of ovarian follicles in natural menstrual cycles
39(1)
3.10.5 Development of ovarian follicles in stimulated cycles
39(1)
3.10.6 Development of ovarian follicles during a controlled cycle
40(1)
3.10.7 Ovarian stimulation protocols for IVF
40(3)
3.10.8 Spontaneous luteinizing hormone (LH) surge
43(1)
3.10.9 Administration of hCG for controlled ovulation
43(1)
3.10.10 Equipment and technique for laparoscopy
44(1)
3.10.11 Oocyte culture and IVF culture of oocytes
45(1)
3.10.12 Preparation of semen
46(1)
3.10.13 In vitro fertilization
47(1)
3.11 Embryo transfer (ET) in humans
48(2)
3.11.1 Time of ET
48(1)
3.11.2 ET technique
48(2)
3.12 Superovulation, IVF and embryo culture in farm animals
50(2)
3.13 ET in cattle
52
3.13.1 ET technique in cattle
52(2)
3.13.2 Technique for freezing embryos in cattle
54(1)
3.13.3 Benefits of ET in cattle
55(1)
References
55
4 Applications of stem cells in disease and gene therapy
1(1)
4.1 Introduction
1(1)
4.2 Types of gene therapy
2(1)
4.2.1 Somatic gene therapy
2(1)
4.2.2 Germline gene therapy
3(1)
4.3 Gene therapy strategies
3(2)
4.3.1 Gene augmentation therapy (GAT)
3(1)
4.3.2 Targeted killing of specific cells
4(1)
4.3.3 Targeted inhibition of gene expression
5(1)
4.3.4 Targeted gene mutation correction
5(1)
4.4 Methods of gene therapy
5(3)
4.4.1 Ex vivo gene therapy
6(1)
4.4.2 In vivo gene therapy
7(1)
4.5 Gene therapy approaches
8(2)
4.5.1 Conventional gene therapy
10(1)
4.5.2 Non-classical gene therapy
10(1)
4.6 Vectors for gene therapy
10(9)
4.6.1 Viral-mediated gene delivery
10(1)
4.6.2 Non-viral-mediated gene therapy
11(8)
4.7 Target sites for gene therapy
19(1)
4.7.1 Target cells for gene transfer
19(1)
4.8 Gene therapy strategies for cancer
20(2)
4.8.1 Tumor necrosis factor gene therapy
20(1)
4.8.2 Suicide gene therapy
20(1)
4.8.3 Two gene cancer therapy
21(1)
4.8.4 Gene replacement therapy
21(1)
4.9 Gene therapy for AIDS
22(1)
4.9.1 REV and ENV genes
22(1)
4.9.2 Genes of HIV proteins
22(1)
4.9.3 Gene to inactivate gp120
22(1)
4.10 Oligonucleotide therapies: antigene and antisense therapy
22(4)
4.10.1 Antisense therapy for cancer
23(2)
4.10.2 Antisense therapy for AIDS
25(1)
4.11 Antisense oligonucleotides as therapeutic agents
26(1)
4.12 Chimeric oligonucleotides in gene correction
27(1)
4.13 Aptamers as therapeutic agents
28(1)
4.14 Ribozymes as therapeutic agents
29(1)
4.15 The future of gene therapy
29(1)
4.16 Stem cell research
30
4.16.1 Stem cell classification
30(2)
4.16.2 Historical background of stem cell research
32(1)
4.16.3 Ethical issues associated with cell lines
33(1)
4.16.4 Applications of stem cell research
33(1)
4.16.5 Human ES cells
34(1)
References
35
5 Transgenic animals in biotechnology
1
5.1 Introduction
1(1)
5.2 Major objectives of gene transfer
2(1)
5.3 Cloning vectors
2(6)
5.3.1 Fish vectors in molecular genetics and biotechnology
5(1)
5.3.2 P element vectors/transposon
5(2)
5.3.3 Baculovirus as versatile vectors for protein expression in insects
7(1)
5.4 Efficient and versatile mammalian virus vectors
8(9)
5.4.1 SV40 vectors
8(6)
5.4.2 BPV (bovine papillomavirus) DNA vectors
14(1)
5.4.3 Retrovirus vectors and their use
14(2)
5.4.4 Vaccinia virus vectors: new approach for producing recombinant vaccines
16(1)
5.4.5 Adenovirus vectors (for gene therapy, vaccination and cancer gene therapy)
16(1)
5.5 Mammalian artificial chromosome (MAC) vectors for somatic gene therapy
17(1)
5.6 DNA constructs
18(6)
5.6.1 Promoter sequences
19(1)
5.6.2 Selectable reporter or marker genes
19(5)
5.7 Transfection methods: an approach towards mammalian cell transfection
24(10)
5.7.1 Calcium phosphate-mediated transfection of eukaryotic cells
24(1)
5.7.2 Transfection using DEAE-dextran
25(1)
5.7.3 Lipofection (lipid-mediated DNA transfection method)
26(2)
5.7.4 Bacterial protoplast fusion
28(1)
5.7.5 Gene transfer by electroporation
28(2)
5.7.6 Retrovirus-mediated gene transfer
30(1)
5.7.7 Basics of DNA microinjection
31(3)
5.8 Xenopus oocytes as a heterologous expression system
34(1)
5.9 ES cell-mediated gene transfer
35(2)
5.10 Targeted gene transfer or gene therapy in mammals
37(8)
5.10.1 Gene disruption by HR in mammals
39(1)
5.10.2 Gene targeting/replacement
40(5)
5.11 Transgene integration, organization and expression
45(1)
5.12 Transgene recovery in mammalian cells
46(2)
5.13 Cloned protein expression in mammalian cells
48
5.13.1 Expression vectors for mammalian cells
50(6)
5.13.2 Enhanced production of recombinant proteins
56(4)
5.13.3 Scale-up of protein purification (stages in downstream processing)
60(3)
References
63