Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Physics in Modern Medicine

(Haverford College, Pennsylvania, USA),
  • Formāts: 450 pages
  • Izdošanas datums: 13-Feb-2020
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781351866996
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 73,88 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 450 pages
  • Izdošanas datums: 13-Feb-2020
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781351866996
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

From x-rays to lasers to magnetic resonance imaging, developments in basic physics research have been transformed into medical technologies for imaging, surgery and therapy at an ever-accelerating pace. Physics has joined with genetics and molecular biology to define much of what is modern in modern medicine and allied health.

Covering a wide range of applications, Introduction to Physics in Modern Medicine, Third Edition builds further on the bestselling second edition. Based on the courses taught by the authors, the book provides medical personnel and students with an exploration of the physics-related applications found in state-of-the-art medical centers.

Requiring no previous acquaintance with physics, biology, or chemistry and keeping mathematics to a minimum, the application-dedicated chapters adhere to simple and self-contained qualitative explanations that make use of examples, illustrations, clinical applications, sample calculations, and exercises. With an enhanced emphasis on digital imaging and computers in medicine, the text gives readers a fundamental understanding of the practical application of each concept and the basic science behind it.

This book provides medical students with an excellent introduction to how physics is applied in medicine, while also providing students in physics with an introduction to medical physics. Each chapter includes worked examples and a complete list of problems and questions.

That so much of the technology discussed in this book was the stuff of dreams just a few years ago, makes this book as fascinating as it is practical, both for those in medicine as well as those in physics who might one day discover that the project they are working on is the basis for the next great medical application.

Features:

·         Introduces state-of-the-art and emerging medical technologies such as optical coherence tomography, x-ray phase contrast imaging, and ultrasound-mediated drug delivery

·         Covers hybrid scanners for cancer imaging and the interplay of molecular medicine with MRI, CT and PET in addition to intensity-modulated radiation therapy and new forms of cancer treatments such as proton and heavy-ion therapies

·         Offers an enhanced emphasis on digital imaging and dosimetry including recent innovations in the pixel-array x-ray detectors, ultrasound matrix transducers and direct-ion storage dosimeters

Instructor's Preface xi
Student Preface xiii
Preface xv
Acknowledgments xvii
1 Introduction and Overview
1(10)
Suggested Reading
8(3)
2 Telescopes for Inner Space: Fiber Optics and Endoscopes
11(46)
2.1 Introduction
11(3)
2.2 Optics: The Science of Light
14(21)
2.2.1 How to see around corners
14(4)
2.2.2 Reflecting and bending light
18(1)
2.2.3 Why does light bend? The index of refraction
19(4)
2.2.4 Optional: How lenses form images
23(4)
2.2.5 Making pipes for light
27(8)
2.3 Fiber Optics Applications in Medicine: Endoscopes and Laparoscopes
35(10)
2.3.1 Different types of endoscopes and their typical construction
35(8)
2.3.2 Some advantages and disadvantages
43(1)
2.3.3 Laparoscopic gallbladder removal
44(1)
2.4 Recent Innovations
45(5)
2.4.1 Robotic surgery and virtual reality in the operating room
45(2)
2.4.2 Telemedicine and military applications
47(2)
2.4.3 Emerging techniques
49(1)
Resources
50(1)
Questions
51(1)
Problems
51(4)
Reflection and refraction
51(1)
Total internal reflection and fiber optics
52(3)
Advanced Problems
55(2)
3 Lasers in Medicine: Healing with Light
57(62)
3.1 Introduction
57(1)
3.2 What is a Laser?
58(2)
3.3 Beyond the Rainbow: The Dual Nature of Light and the Electromagnetic Spectrum
60(6)
3.4 How Lasers Work
66(7)
3.5 How Light Interacts with Body Tissues
73(2)
3.6 Laser Beams and Spatial Coherence
75(5)
3.7 Cooking with Light: Photocoagulation
80(1)
3.8 Trade-Offs in Photocoagulation: Power Density and Heat Flow
81(2)
3.9 Cutting with Light: Photovaporization
83(2)
3.10 More Power: Pulsed Lasers
85(3)
3.11 Lasers and Color
88(2)
3.12 The Atomic Origins of Absorption
90(3)
3.13 How Selective Absorption is Used in Laser Surgery
93(5)
3.14 Lasers in Dermatology
98(2)
3.15 Laser Surgery on the Eye
100(4)
3.16 Lasers in Dentistry
104(1)
3.17 Advantages and Drawbacks of Lasers for Medicine
105(1)
3.18 Photodynamic Therapy: Killing Tumors with Light
106(2)
3.19 New Directions: Diffusive Optical Imaging
108(1)
3.20 New Directions: Optical Coherence Tomography
109(4)
Suggested Reading
113(1)
Questions
114(1)
Problems
115(4)
4 Seeing with Sound: Diagnostic Ultrasound Imaging
119(70)
4.1 Introduction
119(3)
4.2 Sound Waves
122(3)
4.3 What is Ultrasound?
125(4)
4.4 Ultrasound and Energy
129(1)
4.5 How Echoes are Formed
130(3)
4.6 How to Produce Ultrasound
133(3)
4.7 Images from Echoes
136(5)
4.8 Ultrasound Scanner Design
141(6)
4.9 Ultrasound is Absorbed by the Body
147(6)
4.10 Ultrasound Image Quality and Artifacts
153(6)
4.11 How Safe is Ultrasound Imaging?
159(4)
4.12 Obstetrical Ultrasound Imaging
163(4)
4.13 Echocardiography: Ultrasound Images of the Heart
167(1)
4.14 Origins of the Doppler Effect
168(5)
4.15 Using the Doppler Effect to Measure Blood Flow
173(1)
4.16 Color Flow Images
174(2)
4.17 Advanced Ultrasound Techniques
176(2)
4.18 Portable Ultrasound: Appropriate Technology for the Developing World
178(1)
4.19 Current Research Directions: Ultrasound-Mediated Drug Delivery
178(3)
Suggested Reading
181(1)
Questions
182(1)
Problems
183(5)
Basic physics of sound waves
183(1)
Echo ranging and echo intensity
183(2)
Absorption of ultrasound
185(1)
Sources of distortion
186(1)
Doppler ultrasound
187(1)
Another Useful Source of Problems on Ultrasound Imaging
188(1)
5 X-ray Vision: Diagnostic X-rays and CT Scans
189(80)
5.1 Introduction
189(3)
5.2 Diagnostic X-ray Images: The Body's X-ray Shadow
192(2)
5.3 How X-rays are Generated
194(9)
5.3.1 Bremsstrahlung radiation
194(3)
5.3.2 X-ray tube spectrum and tube rating
197(2)
5.3.3 Image resolution and blurring
199(3)
5.3.4 Development of new x-ray sources
202(1)
5.4 Types of X-ray Interactions with Matter
203(10)
5.5 Basic Issues in X-ray Image Formation
213(7)
5.6 Contrast Media Make Soft Tissues Visible on an X-ray
220(3)
5.7 X-ray Image Receptors and Digital X-ray Imaging
223(15)
5.7.1 Film-based image receptors
223(5)
5.7.2 Digital radiography
228(2)
5.7.3 Fluoroscopy
230(2)
5.7.4 Computerized image processing
232(6)
5.8 Mammography: X-ray Screening for Breast Cancer
238(6)
5.9 Computed Tomography (CT)
244(11)
5.10 Application: Spotting Brittle Bones: Bone Mineral Scans for Osteoporosis
255(3)
5.11 New Directions: X-ray Phase Contrast Imaging
258(4)
Suggested Reading
262(1)
Questions
263(2)
Problems
265(4)
X-ray sources
265(1)
Interaction of x-rays with matter
266(1)
Contrast, contrast media, and x-ray absorption
267(1)
X-ray detectors
268(1)
6 Images from Radioactivity: Radionuclide Scans, SPECT, and PET
269(40)
6.1 Introduction: Radioactivity and Medicine
269(2)
6.2 Nuclear Physics Basics
271(4)
6.3 Radioactivity Fades with Time: The Concept of Half-Lives
275(5)
6.4 Gamma Camera Imaging
280(8)
6.5 Emission Tomography with Radionuclides: SPECT and PET
288(12)
6.6 Application: Emission Computer Tomography Studies of the Brain
300(3)
6.7 Hybrid Scanners
303(2)
Suggested Reading
305(1)
Questions
305(1)
Problems
306(1)
Useful Sources of Problems
307(2)
7 Radiation Therapy and Radiation Safety in Medicine
309(50)
7.1 Introduction
309(1)
7.2 Measuring Radioactivity and Radiation
310(9)
7.3 Origins of the Biological Effects of Ionizing Radiation
319(7)
7.4 The Two Regimes of Radiation Damage: Radiation Sickness and Cancer Risk
326(14)
7.5 Radiation Therapy: Killing Tumors with Radiation
340(11)
7.6 New Directions in Radiation Therapy
351(3)
Suggested Reading
354(1)
Comprehensive Summaries of the Risks of Ionizing Radiation
355(1)
Useful Sources of More Advanced Problems
355(1)
Questions
355(1)
Problems
356(3)
8 Magnetic Resonance Imaging
359(60)
8.1 Introduction
359(3)
8.2 The Science of Magnetism
362(6)
8.3 Nuclear Magnetism
368(13)
8.3.1 Elementary sources of magnetism
368(1)
8.3.2 Nuclear magnetic moment
369(3)
8.3.3 Nuclear magnetic resonance (NMR)
372(6)
8.3.4 Nuclear induction
378(3)
8.4 Contrast Mechanisms for MRI
381(7)
8.5 Listening to Spin Echoes
388(6)
8.6 How MRI Maps the Body
394(6)
8.7 How Safe is MRI?
400(4)
8.8 Creating Better Contrast
404(3)
8.9 Sports Medicine and MRI
407(1)
8.10 Magnetic Resonance Breast Imaging
408(2)
8.11 Mapping Body Chemistry with MR Spectroscopy
410(1)
8.12 Brain Mapping and Functional MRI
411(4)
Suggested Reading
415(1)
Questions
415(1)
Problems
416(3)
Index 419
Suzanne Amador Kane is a professor of physics and astronomy at Haverford College in Pennsylvania. Her research interests lie at the interface of soft condensed matter physics and biophysics, including biologically-inspired nanostructures, model membrane systems, self-assembly, liquid crystals and artificial evolution.

Boris Gelman, Ph.D. is an Associate Professor of Physics at New York City College of Technology of The City University of New York. He is interested in undergraduate science curriculum development and in improving learning outcomes and student experience. He conducts research in theoretical nuclear physics, studying the forces that give rise to the properties of atomic nuclei and to the structure of neutrons and protons.