Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Plasma Technology: Science, Engineering, and Applications

(Rutland, UK)
  • Formāts: PDF+DRM
  • Izdošanas datums: 02-Aug-2011
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527632176
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 102,25 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 02-Aug-2011
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527632176
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Written by a university lecturer with more than forty years experience in plasma technology, this book adopts a didactic approach in its coverage of the theory, engineering and applications of technological plasmas.
The theory is developed in a unified way to enable brevity and clarity, providing readers with the necessary background to assess the factors that affect the behavior of plasmas under different operating conditions. The major part of the book is devoted to the applications of plasma technology and their accompanying engineering aspects, classified by the various pressure and density regimes at which plasmas can be produced. Two chapters on plasma power supplies round off the book.
With its broad range of topics, from low to high pressure plasmas, from characterization to modeling, and from materials to components, this is suitable for advanced undergraduates, postgraduates and professionals in the field.
Preface xi
Symbols, Constants and Electronic Symbols xiii
1 Plasma, an Overview
1(14)
1.1 Introduction
1(3)
1.2 Plasma
4(1)
1.2.1 Space Plasmas
4(1)
1.2.2 Kinetic Plasmas
4(1)
1.2.3 Technological Plasmas
5(1)
1.3 Classical Models
5(6)
1.3.1 Simple Ballistic and Statistical Models
5(1)
1.3.2 Statistical Behaviour
6(2)
1.3.3 Collisions Between Particles
8(1)
1.3.4 Coulomb Forces
9(1)
1.3.5 Boundaries and Sheaths
10(1)
1.3.6 Degree of Ionization
10(1)
1.4 Plasma Resonance
11(1)
1.5 The Defining Characteristics of a Plasma
11(4)
References
13(1)
Further Reading
13(2)
2 Elastic and Inelastic Collision Processes in Weakly Ionized Gases
15(14)
2.1 Introduction
15(1)
2.2 The Drift Velocity
15(6)
2.2.1 Electrical Conductivity
17(1)
2.2.2 Mobility
17(1)
2.2.3 Thermal Velocity
18(1)
2.2.4 Collision Frequency
18(1)
2.2.5 Collision Cross-section
19(2)
2.3 Inelastic Collision Processes
21(8)
2.3.1 Excitation
22(1)
2.3.1.1 Metastable Processes
22(1)
2.3.2 Ionization and Recombination Processes
23(1)
2.3.2.1 Charge Transfer
24(1)
2.3.2.2 Dissociation
24(1)
2.3.2.3 Negative Ionization
24(1)
2.3.2.4 Recombination
24(1)
2.3.2.5 Metastable Ionization
25(1)
References
26(3)
3 The Interaction of Electromagnetic Fields with Plasmas
29(16)
3.1 Introduction
29(1)
3.2 The Behaviour of Plasmas at DC and Low Frequencies in the Near Field
29(8)
3.2.1 Charged Particles in Electromagnetic Fields
31(1)
3.2.1.1 Behaviour of a Charged Particle in an Oscillating Electric Field
32(2)
3.2.1.2 Plasma Frequency
34(1)
3.2.1.3 The Debye Radius
35(2)
3.3 Behaviour of Charged Particles in Magnetic Fields (Magnetized Plasmas)
37(4)
3.4 Initiation of an Electrical Discharge or Plasma
41(1)
3.5 Similarity Conditions
41(4)
References
43(1)
Further Reading
43(2)
4 Coupling Processes
45(32)
4.1 Introduction
45(1)
4.2 Direct Coupling
45(17)
4.2.1 The Cathode
49(2)
4.2.1.1 Emission Processes
51(5)
4.2.2 The Cathode Fall Region
56(1)
4.2.3 The Anode
57(1)
4.2.4 The Discharge Column
57(2)
4.2.5 Interaction of Magnetic Fields with a Discharge or Plasma
59(3)
4.3 Indirect Coupling
62(15)
4.3.1 Induction Coupling
62(2)
4.3.2 Capacitive Coupling
64(1)
4.3.3 Propagation of an Electromagnetic Wave
65(3)
4.3.4 The Helical Resonator
68(1)
4.3.5 Microwave Waveguides
69(1)
4.3.6 Electron Cyclotron Resonance
70(4)
4.3.7 The Helicon Plasma Source
74(1)
References
75(1)
Further Reading
75(2)
5 Applications of Nonequilibrium Cold Low-pressure Discharges and Plasmas
77(26)
5.1 Introduction
77(1)
5.2 Plasma Processes Used in Electronics Fabrication
77(11)
5.2.1 The Glow Discharge Diode
80(3)
5.2.2 The Magnetron
83(1)
5.2.3 Inductively Coupled Plasmas
84(1)
5.2.4 Electron Cyclotron Resonance Reactor
85(1)
5.2.5 The Helical Reactor
86(1)
5.2.6 The Helicon Reactor
87(1)
5.3 Low-pressure Electric Discharge and Plasma Lamps
88(3)
5.3.1 The Low-pressure Mercury Vapour Lamp
88(3)
5.3.2 Cold Cathode Low-pressure Lamps
91(1)
5.3.3 Electrodeless Low-pressure Discharge Lamps
91(1)
5.4 Gas Lasers
91(3)
5.5 Free Electron and Ion Beams
94(5)
5.5.1 Electron and Ion Beam Evaporation
94(1)
5.5.2 Ion Beam Processes
95(2)
5.5.3 High-power Electron Beams
97(2)
5.6 Glow Discharge Surface Treatment
99(1)
5.7 Propulsion in Space
100(3)
References
101(1)
Further Reading
101(2)
6 Nonequilibrium Atmospheric Pressure Discharges and Plasmas
103(20)
6.1 Introduction
103(1)
6.2 Atmospheric Pressure Discharges
103(7)
6.2.1 Corona Discharges
105(3)
6.2.2 Corona Discharges on Conductors
108(2)
6.3 Electrostatic Charging Processes
110(4)
6.3.1 Electrostatic Precipitators
110(3)
6.3.2 Electrostatic Deposition
113(1)
6.4 Dielectric Barrier Discharges
114(2)
6.5 Plasma Display Panels
116(1)
6.6 Manufacture of Ozone
116(2)
6.7 Surface Treatment Using Barrier Discharges
118(1)
6.8 Mercury-free Lamps
118(1)
6.9 Partial Discharges
118(2)
6.10 Surface Discharges
120(3)
Further Reading
121(2)
7 Plasmas in Charge and Thermal Equilibrium; Arc Processes
123(32)
7.1 Introduction
123(1)
7.2 Arc Welding
124(7)
7.2.1 Metal Inert Gas Welding
126(1)
7.2.2 Tungsten Inert Gas Welding
127(2)
7.2.3 Submerged Arc Welding
129(1)
7.2.4 The Plasma Torch
129(2)
7.3 Electric Arc Melting
131(7)
7.3.1 The Three-phase AC Arc Furnace
131(3)
7.3.2 DC Arc Furnaces
134(1)
7.3.3 Electric Arc Smelting
135(1)
7.3.4 Plasma Melting Furnaces
136(1)
7.3.5 Vacuum Arc Furnaces
137(1)
7.4 Arc Gas Heaters
138(3)
7.4.1 Inductively Coupled Arc Discharges
139(2)
7.5 High-pressure Discharge Lamps
141(3)
7.6 Ion Lasers
144(1)
7.7 Arc Interrupters
145(4)
7.7.1 Vacuum Circuit Breakers and Contactors
147(2)
7.8 Magnetoplasmadynamic Power Generation
149(1)
7.9 Generation of Electricity by Nuclear Fusion
149(1)
7.10 Natural Phenomena
150(5)
7.10.1 Lightning
150(2)
Further Reading
152(3)
8 Diagnostic Methods
155(18)
8.1 Introduction
155(1)
8.2 Neutral Particle Density Measurement
155(1)
8.3 Probes and Sensors
156(3)
8.3.1 The Langmuir Probe
156(2)
8.3.2 Magnetic Probes
158(1)
8.4 Optical Spectroscopy
159(3)
8.4.1 Optical Emission Spectroscopy
159(2)
8.4.2 Absorption Spectroscopy
161(1)
8.4.3 Scattering Measurements
161(1)
8.5 Interferometry
162(2)
8.5.1 Microwave Interferometer
163(1)
8.6 Mass Spectrometry
164(1)
8.7 Electrical Measurements
165(8)
8.7.1 Electrical Instrumentation
166(1)
8.7.2 The Oscilloscope
167(1)
8.7.3 Electrical Measurements Using Probes
168(2)
8.7.4 Current Measurement
170(2)
Further Reading
172(1)
9 Matching, Resonance and Stability
173(14)
9.1 Introduction
173(1)
9.2 The Plasma Characteristic
173(3)
9.3 Stabilizing Methods
176(3)
9.3.1 Reactive Stabilization
176(3)
9.4 Effect of Frequency
179(1)
9.5 Interaction between the Plasma and Power Supply Time Constants
179(1)
9.6 Matching
180(2)
9.7 Resonance
182(1)
9.8 Parasitic Inductance and Capacitance
183(4)
Further Reading
185(2)
10 Plasma Power Supplies
187(20)
10.1 Introduction
187(1)
10.2 Transformers and Inductors
187(4)
10.3 Rectification
191(2)
10.4 Semiconductor Power Supplies
193(6)
10.4.1 The Inverter Circuit
193(2)
10.4.2 Semiconductor Switches
195(1)
10.4.3 Current Control
195(1)
10.4.4 The Inverter Circuit
196(1)
10.4.5 Converter Circuits
197(1)
10.4.6 Inverter Frequencies
198(1)
10.4.7 High-Frequency Inverter
198(1)
10.5 Electronic Valve Oscillators
199(1)
10.6 Microwave Power Supplies
199(1)
10.7 Pulsed Power Supplies
200(1)
10.8 Ignition Power Supplies
201(4)
10.9 Electromagnetic Interference
205(2)
10.9.1 Conduction
206(1)
Further Reading 207(2)
Index 209
John Ernest Harry has been involved with plasma research for more than fourty years. He has 120 scientific papers, three books and more than ten patents to his name. After a period in industry he joined Loughborough University, UK, as a Senior Lecturer for electrical engineering in 1972 and became Reader in Electric Discharges in 1985. In addition to his lectureships John Ernest Harry is Chief Executive of Plasma Systems Ltd, Kent, UK, and works with Loughborough University as a project consultant.