Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Pseudodifferential and Fourier Integral Operators: Pseudodifferential Operators

  • Formāts: PDF+DRM
  • Sērija : University Series in Mathematics
  • Izdošanas datums: 11-Dec-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781468487800
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 135,62 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : University Series in Mathematics
  • Izdošanas datums: 11-Dec-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781468487800
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

I have tried in this book to describe those aspects of pseudodifferential and Fourier integral operator theory whose usefulness seems proven and which, from the viewpoint of organization and "presentability," appear to have stabilized. Since, in my opinion, the main justification for studying these operators is pragmatic, much attention has been paid to explaining their handling and to giving examples of their use. Thus the theoretical chapters usually begin with a section in which the construction of special solutions of linear partial differential equations is carried out, constructions from which the subsequent theory has emerged and which continue to motivate it: parametrices of elliptic equations in Chapter I (introducing pseudodifferen­ tial operators of type 1, 0, which here are called standard), of hypoelliptic equations in Chapter IV (devoted to pseudodifferential operators of type p, 8), fundamental solutions of strongly hyperbolic Cauchy problems in Chap­ ter VI (which introduces, from a "naive" standpoint, Fourier integral operators), and of certain nonhyperbolic forward Cauchy problems in Chapter X (Fourier integral operators with complex phase). Several chapters-II, III, IX, XI, and XII-are devoted entirely to applications. Chapter II provides all the facts about pseudodifferential operators needed in the proof of the Atiyah-Singer index theorem, then goes on to present part of the results of A. Calderon on uniqueness in the Cauchy problem, and ends with a new proof (due to J. J. Kohn) of the celebrated sum-of-squares theorem of L. Hormander, a proof that beautifully demon­ strates the advantages of using pseudodifferential operators.

Papildus informācija

Springer Book Archives
Contents of Volume 2 xiii
Notation and Background xv
Chapter I Standard Pseudodifferential Operators
1(82)
1 Parametrices of Elliptic Equations
2(8)
2 Definition and Continuity of the "Standard" Pseudodifferential Operators in an Open Subset of Euclidean Space. Pseudodifferential Operators Are Pseudolocal
10(11)
3 Transposition, Composition, Transformation under Diffeomorphisms of Pseudodifferential Operators
21(9)
4 The Symbolic Calculus of Pseudodifferential Operators
30(14)
Appendix: Elliptic Pseudodifferential Operators and Their Parametrices
40(4)
5 Pseudodifferential Operators on Manifolds
44(14)
Appendix: Elliptic Pseudodifferential Operators on a Manifold
55(3)
6 Microlocalization and Wave-Front Sets
58(15)
Appendix: Traces and Multiplication of Distributions Whose Wave-Front Sets Are in Favorable Positions
71(2)
7 Standard Pseudodifferential Operators Acting on Vector-Valued Distributions and on Sections of Vector Bundles
73(10)
Chapter II Special Topics and Applications
83(46)
1 Compact Pseudodifferential Operators
84(10)
2 Fredholm Operators and the Index of Elliptic Pseudodifferential Operators on a Compact Manifold
94(12)
2.1 Fredholm Operators
94(6)
2.2 Application to Pseudodifferential Operators on Compact Manifolds
100(6)
3 Uniqueness in the Cauchy Problem for Certain Operators with Simple Characteristics
106(8)
4 The Friedrichs Lemma
114(5)
5 The Theorem on "Sum of Squares"
119(10)
Chapter III Application to Boundary Problems for Elliptic Equations
129(88)
1 The Generalized Heat Equation and Its Parametrix
132(21)
1.1 Existence and "Uniqueness" of the Parametrix
133(8)
1.2 Reduced Symbol of the Parametrix. Operator U*U. Estimates. "Orthogonal Projections" on the Kernel and the Cokernel
141(6)
1.3 Exact Solution When the Manifold X Is Compact
147(6)
2 Preliminaries to the Study of Elliptic Boundary Problems: Sobolev Spaces in Bounded Open Subsets of Euclidean Spaces. Traces
153(4)
3 Approximate Triangulization of Boundary Problems for Elliptic Equations
157(11)
Appendix: More General Elliptic Systems
167(1)
4 Hypoelliptic Boundary Problems
168(4)
5 Globally Hypoelliptic Boundary Problems. Fredholm Boundary Problems
172(16)
6 Coercive Boundary Problems
188(2)
7 The Oblique Derivative Problem. Boundary Problems with Simple Real Characteristics
190(12)
7.1 An Example: The Oblique Derivative Boundary Problem
190(4)
7.2 Boundary Problems with Simple Real Characteristics
194(1)
7.3 Hypoelliptic Pseudodifferential Operators with Simple Real Characteristics
195(4)
7.4 Subelliptic Pseudodifferential Operators
199(3)
8 Example of a Boundary Problem with Double Characteristics: The ∂-Neumann Problem in Subdomains of CN
202(15)
8.1 Description of the ∂-Neumann Problem
202(8)
8.2 The Principal Symbol of the Calderon Operator R'
210(2)
8.3 The Subprincipal Symbol of the Calderon Operator R'
212(1)
8.4 Hypoellipticity with Loss of One Derivative. Condition Z(q)
213(4)
Chapter IV Pseudodifferential Operators of Type (ρ, δ)
217(22)
1 Parametrices of Hypoelliptic Linear Partial Differential Equations
218(5)
2 Amplitudes and Pseudodifferential Operators of Type (ρ, δ)
223(6)
3 The Calderon--Vaillancourt Theorem and the Sharp Girding Inequality
229(10)
Chapter V Analytic Pseudodifferential Operators
239
1 Analyticity in the Base and in the Cotangent Bundle
240(14)
2 Pseudoanalytic and Analytic Amplitudes
254(10)
3 Analytic Pseudodifferential Operators
264(14)
3.1 Symbolic Calculus
265(6)
3.2 Parametrices of Elliptic Analytic Pseudodifferential Operators
271(4)
3.3 Analytic Pseudodifferential Operators on a Real Analytic Manifold
275(3)
4 Microlocalization All the Way. The Holmgrena Theorem
278(10)
5 Application to Boundary Problems for Elliptic Equations: Analyticity up to the Boundary
288
5.1 Construction and Estimates of the Local Parametrix U(t)
289(4)
5.2 The Operator U(t) Is Analytic Pseudolocal in the Strong Sense
293(2)
5.3 Analyticity in the Cauchy Problem
295(1)
5.4 Application to Elliptic Boundary Problems
296
References xxix
Index xxxv