An Introduction to q-analysis |
|
xi | |
|
|
1 | (38) |
|
|
1 | (6) |
|
|
5 | (2) |
|
|
7 | (7) |
|
|
11 | (3) |
|
1.3 q-binomial coefficients |
|
|
14 | (6) |
|
|
19 | (1) |
|
1.4 Some identities for q-binomial coefficients |
|
|
20 | (5) |
|
|
23 | (2) |
|
1.5 Another property of g-binomial coefficients |
|
|
25 | (4) |
|
|
27 | (2) |
|
1.6 q-multinomial coefficients |
|
|
29 | (4) |
|
|
31 | (2) |
|
|
33 | (4) |
|
|
36 | (1) |
|
1.8 Bibliographical Notes |
|
|
37 | (2) |
|
Chapter 2 Gr-binomial Theorems |
|
|
39 | (54) |
|
2.1 A noncommutative q-binomial Theorem |
|
|
39 | (6) |
|
|
43 | (2) |
|
|
45 | (4) |
|
|
47 | (2) |
|
2.3 Rothe's g-binomial theorem |
|
|
49 | (8) |
|
|
53 | (4) |
|
|
57 | (4) |
|
|
59 | (2) |
|
2.5 Two q-binomial theorems of Gauss |
|
|
61 | (10) |
|
|
66 | (5) |
|
2.6 Jacobi's g-binomial theorem |
|
|
71 | (3) |
|
|
72 | (2) |
|
2.7 MacMahon's g-binomial theorem |
|
|
74 | (5) |
|
|
77 | (2) |
|
2.8 A partial fraction decomposition |
|
|
79 | (3) |
|
|
82 | (1) |
|
2.9 A curious (/-identity of Euler, and some extensions |
|
|
82 | (6) |
|
|
86 | (2) |
|
2.10 The Chen-Chu-Gu identity - |
|
|
88 | (3) |
|
|
91 | (1) |
|
2.11 Bibliographical Notes |
|
|
91 | (2) |
|
Chapter 3 Partitions I: Elementary Theory |
|
|
93 | (56) |
|
3.1 Partitions with distinct parts |
|
|
93 | (5) |
|
|
95 | (3) |
|
3.2 Partitions with repeated parts |
|
|
98 | (8) |
|
|
103 | (3) |
|
|
106 | (10) |
|
|
113 | (3) |
|
3.4 q-binomial coefficients and partitions |
|
|
116 | (4) |
|
|
119 | (1) |
|
3.5 An identity of Euler, and its "finite" form |
|
|
120 | (8) |
|
|
126 | (2) |
|
3.6 Another identity of Euler, and its finite form |
|
|
128 | (4) |
|
|
130 | (2) |
|
3.7 The Cauchy/Crelle q-binomial series |
|
|
132 | (9) |
|
|
137 | (4) |
|
3.8 q-exponential functions |
|
|
141 | (7) |
|
|
145 | (3) |
|
3.9 Bibliographical Notes |
|
|
148 | (1) |
|
Chapter 4 Partitions II: Geometric Theory |
|
|
149 | (42) |
|
4.1 Euler's pentagonal number theorem |
|
|
149 | (8) |
|
|
153 | (4) |
|
|
157 | (7) |
|
|
162 | (2) |
|
4.3 Euler's pentagonal number theorem: Franklin's proof |
|
|
164 | (3) |
|
|
167 | (1) |
|
|
167 | (13) |
|
|
173 | (7) |
|
4.5 Sylvester's fishhook bijection |
|
|
180 | (8) |
|
|
187 | (1) |
|
4.6 Bibliographical Notes |
|
|
188 | (3) |
|
Chapter 5 More q-identities: Jacobi, Gauss, and Heine |
|
|
191 | (56) |
|
5.1 Jacobi's triple product |
|
|
191 | (10) |
|
|
195 | (6) |
|
5.2 Other proofs and related results |
|
|
201 | (13) |
|
|
205 | (9) |
|
5.3 The quintuple product identity |
|
|
214 | (7) |
|
|
218 | (3) |
|
|
221 | (6) |
|
|
223 | (4) |
|
5.5 Basic hypergeometric series |
|
|
227 | (6) |
|
|
230 | (3) |
|
|
233 | (6) |
|
|
236 | (3) |
|
5.7 The g-Pfaff Saalschutz identity |
|
|
239 | (4) |
|
|
241 | (2) |
|
5.8 Bibliographical Notes |
|
|
243 | (4) |
|
Chapter 6 Ramanujan's iipi Summation Formula |
|
|
247 | (24) |
|
|
247 | (3) |
|
|
249 | (1) |
|
|
250 | (6) |
|
|
253 | (3) |
|
6.3 From the q-Pfaff-Saalschutz sum to Ramanujan's 1ψ1 summation |
|
|
256 | (3) |
|
|
259 | (1) |
|
6.4 Another identity of Cauchy, and its finite form |
|
|
259 | (4) |
|
|
260 | (3) |
|
6.5 Cauchy's "mistaken identity" |
|
|
263 | (3) |
|
|
265 | (1) |
|
6.6 Ramanujan's formula again |
|
|
266 | (2) |
|
|
268 | (1) |
|
6.7 Bibliographical Notes |
|
|
268 | (3) |
|
Chapter 7 Sums of Squares |
|
|
271 | (18) |
|
|
271 | (5) |
|
|
272 | (4) |
|
|
276 | (5) |
|
|
278 | (3) |
|
|
281 | (7) |
|
|
286 | (2) |
|
7.4 Bibliographical Notes |
|
|
288 | (1) |
|
Chapter 8 Ramanujan's Congruences |
|
|
289 | (16) |
|
8.1 Ramanujan's congruences |
|
|
289 | (3) |
|
|
291 | (1) |
|
8.2 Ramanujan's "most beautiful" identity |
|
|
292 | (8) |
|
|
298 | (2) |
|
8.3 Ramanujan's congruences again |
|
|
300 | (3) |
|
8.4 Bibliographical Notes |
|
|
303 | (2) |
|
Chapter 9 Some Combinatorial Results |
|
|
305 | (46) |
|
9.1 Revisiting the q-factorial |
|
|
305 | (6) |
|
|
309 | (2) |
|
9.2 Revisiting the q-binomial coefficients |
|
|
311 | (5) |
|
|
314 | (2) |
|
9.3 Foata's bijection for q-multinomial coefficients |
|
|
316 | (3) |
|
|
319 | (1) |
|
|
319 | (4) |
|
|
321 | (2) |
|
9.5 g-derangement numbers |
|
|
323 | (8) |
|
|
329 | (2) |
|
9.6 Q-Eulerian numbers and polynomials |
|
|
331 | (7) |
|
|
338 | (1) |
|
9.7 Q-trigonometric functions |
|
|
338 | (5) |
|
|
342 | (1) |
|
9.8 Combinatorics of q-tangents and secants |
|
|
343 | (6) |
|
9.9 Bibliographical Notes |
|
|
349 | (2) |
|
Chapter 10 The Rogers-Ramanujan Identities I: Schur |
|
|
351 | (26) |
|
10.1 Schur's extension of Franklin's argument |
|
|
351 | (6) |
|
|
356 | (1) |
|
10.2 The Bressoud-Chapman proof |
|
|
357 | (6) |
|
|
361 | (2) |
|
10.3 The AKP and GIS identities |
|
|
363 | (2) |
|
10.4 Schur's second partition theorem |
|
|
365 | (10) |
|
|
370 | (5) |
|
10.5 Bibliographical Notes |
|
|
375 | (2) |
|
Chapter 11 The Rogers-Ramanujan Identities II: Rogers |
|
|
377 | (40) |
|
|
377 | (6) |
|
|
381 | (2) |
|
11.2 The Rogers-Ramanujan identities and partitions |
|
|
383 | (5) |
|
|
388 | (1) |
|
11.3 Rogers's second proof |
|
|
388 | (6) |
|
|
391 | (3) |
|
11.4 More identities of Rogers |
|
|
394 | (5) |
|
|
399 | (1) |
|
11.5 Rogers's identities and partitions |
|
|
399 | (4) |
|
11.6 The Gollnitz-Gordon identities |
|
|
403 | (9) |
|
|
407 | (5) |
|
11.7 The Gollnitz-Gordon identities and partitions |
|
|
412 | (4) |
|
|
414 | (2) |
|
11.8 Bibliographical Notes |
|
|
416 | (1) |
|
Chapter 12 The Rogers-Selberg Function |
|
|
417 | (20) |
|
12.1 The Rogers-Selberg function |
|
|
417 | (3) |
|
|
419 | (1) |
|
|
420 | (3) |
|
|
423 | (1) |
|
12.3 The Selberg coefficients |
|
|
423 | (4) |
|
|
427 | (1) |
|
|
427 | (2) |
|
12.5 Explicit formulas for the Q functions |
|
|
429 | (1) |
|
|
430 | (1) |
|
12.6 Explicit formulas for S3,i(χ) |
|
|
430 | (2) |
|
|
431 | (1) |
|
12.7 The payoff for k = 3 |
|
|
432 | (2) |
|
|
434 | (1) |
|
|
434 | (2) |
|
12.9 Bibliographical Notes |
|
|
436 | (1) |
|
Chapter 13 Bailey's 6&spi;6 Sum |
|
|
437 | (64) |
|
|
437 | (5) |
|
|
439 | (3) |
|
13.2 Another proof of Ramanujan's "most beautiful" identity |
|
|
442 | (2) |
|
13.3 Sums of eight squares and of eight triangular numbers |
|
|
444 | (5) |
|
|
447 | (2) |
|
13.4 Bailey's 6ψ6 summation formula |
|
|
449 | (5) |
|
|
450 | (4) |
|
13.5 Askey's proof: Phase 1 |
|
|
454 | (3) |
|
|
457 | (1) |
|
13.6 Askey's proof: Phase 2 |
|
|
457 | (3) |
|
|
460 | (1) |
|
13.7 Askey's proof: Phase 3 |
|
|
460 | (5) |
|
|
461 | (4) |
|
|
465 | (6) |
|
|
470 | (1) |
|
|
471 | (4) |
|
13.10 Watson's transformation |
|
|
475 | (6) |
|
|
479 | (2) |
|
13.11 Bibliographical Notes |
|
|
481 | (2) |
|
Appendix A A Brief Guide to Notation |
|
|
483 | (4) |
|
Appendix B Infinite Products |
|
|
487 | (8) |
|
|
491 | (4) |
|
Appendix C Tannery's Theorem |
|
|
495 | (6) |
Bibliography |
|
501 | (12) |
Index of Names |
|
513 | (4) |
Index of Topics |
|
517 | |