Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Quantum Optics: Photon and Biphoton Physics

(University of Maryland)
  • Formāts - PDF+DRM
  • Cena: 58,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"This text offers a complete revision for its introduction to the quantum theory of light, including notable developments as well as improvements in presentation of basic theory and concepts, with continued emphasis on experimental aspects. The author provides a thorough overview on basic methods of classical and quantum mechanical measurements"--

This book offers a complete revision for its introduction to the quantum theory of light, including notable developments as well as improvements in presentation of basic theory and concepts, with continued emphasis on experimental aspects. The author provides a thorough overview on basic methods of classical and quantum mechanical measurements in quantum optics, enabling readers to analyze, summarize, and resolve quantum optical problems. The broad coverage of concepts and tools and its practical, experimental emphasis set it apart from other available resources. New discussions of timely topics such as the concept of the photon and distinguishability bring the entire contents up to date.

Key Features:

  • Provides a complete update of a classic textbook for the field.
  • Features many new topics, including optical coherence, coherent and incoherent imaging, turbulence-free interferometry.
  • Includes new chapters for intensity fluctuation correlation and thermal light ghost imaging, and biphoton imaging.
  • Offers a complete overhaul of the introductory theory to give a more coherent and thorough treatment.
  • Expands on discussions of optical tests of quantum theory, Popper’s experiment, Einstein’s locality questions, and the delayed choice quantum eraser.
Preface ix
Acknowledgments xiii
Author xv
Chapter 1 Electromagnetic Wave Theory and Measurement of Light
1(20)
1.1 Electromagnetic Wave Theory Of Light
1(2)
1.2 Classical Superposition
3(4)
1.3 Intensity Of Light: A Measurable Quantity
7(2)
1.4 Intensity Of Light: Expectation And Fluctuation
9(2)
1.5 Measurement Of Intensity: Ensemble Average And Time Average
11(4)
1.6 Measurement Of Intensity: Temporal Fluctuation And Spatial Fluctuation
15(2)
1.7 Blackbody Radiation Under Maxwell's Continuum Electrodynamics
17(4)
Chapter 2 Quantum Theory of Light: Field Quantization and Photon
21(20)
2.1 The Experimental Foundation---I: Blackbody Radiation
22(2)
2.2 The Experimental Foundation---II: Photoelectric Effect
24(3)
2.3 Einstein's Granularity Picture Of Light
27(4)
2.4 Field Quantization And The Light Quantum
31(10)
Chapter 3 Quantum Theory of Light: The State of Quantized Field and Photon
41(38)
3.1 Photon Number State Of Radiation Field
41(4)
3.2 Coherent State Of Radiation Field
45(3)
3.3 Density Operator, Density Matrix, And The Expectation Value Of An Observable
48(4)
3.4 Pure State And Mixed State
52(10)
3.5 Composite System And Two-Photon State Of Radiation Field
62(2)
3.6 A Simple Model Of Single-Photon And Multi-Photon State Creation
64(6)
3.7 Product State, Entangled State, And Mixed State Of Photon Pairs
70(9)
Chapter 4 Measurement of Quantized Field and Photon
79(20)
4.1 Measurement Of Einstein's Bundle Of Ray
79(4)
4.2 Time Dependent Perturbation Theory
83(2)
4.3 Measurement Of Light: Photon Counting
85(2)
4.4 Measurement Of Light: Joint Detection Of Photons
87(2)
4.5 Field Propagation In Space-Time
89(3)
4.6 Quantized Subfield And Effective Wavefunction Of Photon
92(4)
4.7 Joint Measurement Of Composite Radiation Systems
96(3)
Chapter 5 Coherent and Incoherent Radiation
99(16)
5.1 Coherent And Incoherent Radiation---Einstein's Picture
99(7)
5.2 Coherent And Incoherent Radiation---Quantum Mechanical Picture
106(2)
5.3 Temporal Coherence And Spatial Coherence
108(7)
Chapter 6 Diffraction and Imaging
115(22)
6.1 Diffraction
115(6)
6.2 Field Propagation
121(5)
6.3 Optical Imaging
126(7)
6.4 Fourier Transform Via A Lens
133(4)
Chapter 7 First-Order Coherence of Light
137(38)
7.1 First-Order Coherence Of Light---Em Theory
138(4)
7.2 First-Order Temporal Coherence---Einstein's Picture
142(9)
7.3 First-Order Spatial Coherence---Einstein's Picture
151(5)
7.4 First-Order Coherence Of Light---Qm Theory
156(3)
7.5 First-Order Temporal Quantum Coherence Of Light
159(8)
7.6 First-Order Spatial Quantum Coherence Of Light
167(2)
7.7 Photon And Effective Wavefunction
169(2)
7.8 Measurement Of The First-Order Coherence Of Light
171(4)
Chapter 8 Second-Order Coherence of Light
175(54)
8.1 Second-Order Coherence---Formulated From Maxwell's Continuum Em Theory
176(3)
8.2 Second-Order Coherence In Einstein's Granularity Picture Of Light
179(8)
8.3 Second-Order Coherence---Formulated From Quantum Theory Of Light
187(1)
8.4 Second-Order Qm Coherence Of Thermal State
188(10)
8.5 Second-Order Coherence Of Coherent Light
198(4)
8.6 Second-Order Coherence Of Entangled State And Number State
202(4)
8.7 Measurement Of Second-Order Coherence
206(5)
8.8 The Hanbury Brown And Twiss Interferometer
211(8)
8.9 Nth-Order Coherence Of Light
219(10)
Chapter 9 Quantum Entanglement
229(26)
9.1 Epr Experiment And Epr State
229(5)
9.2 Entangled State Vs Product State And Classically Correlated State
234(3)
9.3 Entangled Biphoton State
237(4)
9.4 Epr Correlation Of Entangled Biphoton System
241(6)
9.5 Subsystem In An Entangled Two-Photon State
247(2)
9.6 Biphoton In Dispersive Media
249(6)
Chapter 10 Two-Photon Interferometry I: Biphoton Interference
255(22)
10.1 Is Two-Photon Interference The Interference Of Two Photons?
256(9)
10.2 Two-Photon Interference With Orthogonal Polarization
265(3)
10.3 Franson Interferometer
268(3)
10.4 Two-Photon Ghost Interference
271(6)
Chapter 11 Two-Photon Interferometry II: Two-Photon Interference of Thermal Field
277(52)
11.1 Two-Photon Interference Between Spatially Separated Incoherent Thermal Fields
278(11)
11.2 Two-Photon Interference Between Temporally Separated Incoherent Thermal Fields
289(8)
11.3 Two-Photon Anti-Correlation Of Incoherent Thermal Fields
297(8)
11.4 Two-Photon Interference With Incoherent Orthogonal Polarized Thermal Fields
305(9)
11.5 Turbulence-Free Two-Photon Interferometer
314(6)
11.6 Turbulence Induced Turbulence-Free Two-Photon Interference Of Laser Beam
320(9)
Chapter 12 Quantum Imaging
329(40)
12.1 Biphoton Imaging
329(6)
12.2 Biphoton Ghost Imaging
335(8)
12.3 Thermal Light Ghost Imaging
343(6)
12.4 Turbulence-Free Ghost Imaging And Camera
349(7)
12.5 X-Ray Ghost Microscope
356(8)
12.6 Classical Simulation Of Ghost Imaging
364(5)
Chapter 13 Homodyne Detection and Heterodyne Detection of Light
369(10)
13.1 Optical Homodyne And Heterodyne Detection
369(2)
13.2 Balanced Homodyne And Heterodyne Detection
371(4)
13.3 Balanced Homodyne Detection Of Independent And Coupled Thermal Fields
375(4)
Chapter 14 Optical Tests of Foundations of Quantum Theory
379(44)
14.1 Hidden Variable Theory And Quantum Calculation For The Measurement Of Spin 1/2 Bohm State
383(2)
14.2 Bell's Theorem And Bell's Inequality
385(4)
14.3 Bell States
389(3)
14.4 Bell State Preparation
392(6)
14.5 Scully's Quantum Eraser
398(10)
14.5.1 Random Delayed Choice Quantum Eraser One
400(3)
14.5.2 Random Delayed Choice Quantum Eraser Two
403(5)
14.6 Popper's Experiment
408(15)
14.6.1 Popper's Experiment One
410(3)
14.6.2 Popper's Experiment Two
413(10)
Index 423
Yanhua Shih is professor of physics at the University of Maryland Baltimore County (UMBC), where he started the Quantum Optics Laboratory of UMBC in the fall of 1989. He received his PhD in 1987 from the Department of Physics, University of Maryland, College Park. His group has been recognized as among the leaders in the field of quantum optics that attempts to probe the foundations of quantum theory. His pioneering research on multiphoton entanglement, multiphoton interferometry, and quantum imaging has been recognized by the physics and engineering communities. Yanhua Shih received the Willis Lamb Medal in 2002 for his pioneer contributions to quantum optics and especially the study of coherence effects of multi-photon entangled states.