Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Ramsey Theory

  • Formāts: 207 pages
  • Sērija : Student Mathematical Library
  • Izdošanas datums: 10-Mar-2018
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470449940
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 66,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 207 pages
  • Sērija : Student Mathematical Library
  • Izdošanas datums: 10-Mar-2018
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470449940
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book takes the reader on a journey through Ramsey theory, from graph theory and combinatorics to set theory to logic and metamathematics. Written in an informal style with few requisites, it develops two basic principles of Ramsey theory: many combinatorial properties persist under partitions, but to witness this persistence, one has to start with very large objects. The interplay between those two principles not only produces beautiful theorems but also touches the very foundations of mathematics. In the course of this book, the reader will learn about both aspects. Among the topics explored are Ramsey's theorem for graphs and hypergraphs, van der Waerden's theorem on arithmetic progressions, infinite ordinals and cardinals, fast growing functions, logic and provability, Godel incompleteness, and the Paris-Harrington theorem.

Quoting from the book, ``There seems to be a murky abyss lurking at the bottom of mathematics. While in many ways we cannot hope to reach solid ground, mathematicians have built impressive ladders that let us explore the depths of this abyss and marvel at the limits and at the power of mathematical reasoning at the same time. Ramsey theory is one of those ladders.'' This book is published in cooperation with Mathematics Advanced Study Semesters.
Foreword: MASS at Penn State University vii
Preface ix
Chapter 1 Graph Ramsey theory
1(40)
§1.1 The basic setting
1(3)
§1.2 The basics of graph theory
4(10)
§1.3 Ramsey's theorem for graphs
14(7)
§1.4 Ramsey numbers and the probabilistic method
21(10)
§1.5 Turan's theorem
31(3)
§1.6 The finite Ramsey theorem
34(7)
Chapter 2 Infinite Ramsey theory
41(44)
§2.1 The infinite Ramsey theorem
41(2)
§2.2 Konig's lemma and compactness
43(7)
§2.3 Some topology
50(5)
§2.4 Ordinals, well-orderings, and the axiom of choice
55(9)
§2.5 Cardinality and cardinal numbers
64(6)
§2.6 Ramsey theorems for uncountable cardinals
70(10)
§2.7 Large cardinals and Ramsey cardinals
80(5)
Chapter 3 Growth of Ramsey functions
85(44)
§3.1 Van der Waerden's theorem
85(13)
§3.2 Growth of van der Waerden bounds
98(7)
§3.3 Hierarchies of growth
105(8)
§3.4 The Hales-Jewett theorem
113(10)
§3.5 A really fast-growing Ramsey function
123(6)
Chapter 4 Metamathematics
129(70)
§4.1 Proof and truth
129(16)
§4.2 Non-standard models of Peano arithmetic
145(7)
§4.3 Ramsey theory in Peano arithmetic
152(7)
§4.4 Incompleteness
159(12)
§4.5 Indiscernibles
171(11)
§4.6 Diagonal indiscernibles via Ramsey theory
182(6)
§4.7 The Paris-Harrington theorem
188(5)
§4.8 More incompleteness
193(6)
Bibliography 199(4)
Notation 203(2)
Index 205
Matthew Katz, Pennsylvania State University, University Park, PA.

Jan Reimann, Pennsylvania State University, University Park, PA.