Atjaunināt sīkdatņu piekrišanu

E-grāmata: Introduction to Statistical Data Analysis for the Life Sciences

(University of Copenhagen, Denmark)
  • Formāts: 526 pages
  • Izdošanas datums: 06-Nov-2014
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040158500
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 526 pages
  • Izdošanas datums: 06-Nov-2014
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040158500
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Ekstrom and Sorensen have revised their textbook based on comments, suggestions, and requests from lecturers and students. They have also added new chapters, one on non-linear regression models and another containing examples of complete data analyses to demonstrate how a full-fledged statistical analysis might be undertaken and the results presented. Other topics include linear regression, the normal distribution, hypothesis tests, model validation and prediction, probabilities, the binomial distribution. Students can use any statistical software, but the authors encourage the use of R. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com)

A Hands-On Approach to Teaching Introductory Statistics

Expanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the mathematics underlying classical statistical analysis, the modeling aspects of statistical analysis and the biological interpretation of results, and the application of statistical software in analyzing real-world problems and datasets.

New to the Second Edition

  • A new chapter on non-linear regression models
  • A new chapter that contains examples of complete data analyses, illustrating how a full-fledged statistical analysis is undertaken
  • Additional exercises in most chapters
  • A summary of statistical formulas related to the specific designs used to teach the statistical concepts

This text provides a computational toolbox that enables students to analyze real datasets and gain the confidence and skills to undertake more sophisticated analyses. Although accessible with any statistical software, the text encourages a reliance on R. For those new to R, an introduction to the software is available in an appendix. The book also includes end-of-chapter exercises as well as an entire chapter of case exercises that help students apply their knowledge to larger datasets and learn more about approaches specific to the life sciences.

Description of Samples and Populations. Linear Regression. Comparison of
Groups. The Normal Distribution. Statistical Models, Estimation, and
Confidence Intervals. Hypothesis Tests. Model Validation and Prediction.
Linear Normal Models. Non-Linear Regression. Probabilities. The Binomial
Distribution. Analysis of Count Data. Logistic Regression. Statistical
Analysis Examples. Case Exercises. Appendices. Bibliography. Index.
Claus Thorn Ekstrom, Helle Sųrensen