Atjaunināt sīkdatņu piekrišanu

Introduction to Stellar Structure 1st ed. 2016 [Hardback]

  • Formāts: Hardback, 215 pages, height x width: 235x155 mm, weight: 4734 g, XV, 215 p., 1 Hardback
  • Sērija : Astronomy and Planetary Sciences
  • Izdošanas datums: 25-Sep-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319161415
  • ISBN-13: 9783319161419
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 37,98 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 44,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 215 pages, height x width: 235x155 mm, weight: 4734 g, XV, 215 p., 1 Hardback
  • Sērija : Astronomy and Planetary Sciences
  • Izdošanas datums: 25-Sep-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319161415
  • ISBN-13: 9783319161419
Citas grāmatas par šo tēmu:
This book provides a comprehensive overview of stellar structure, evolution and basic stellar properties. It includes integrated problems within the chapters, with worked solutions. 

In the first part of this book, the author presents the basic properties of the stellar interior and describes them thoroughly, along with deriving the main stellar structure equations of temperature, density, pressure and luminosity, among others. The process and application of solving these equations is explained, as well as linking these results with actual observations. The second part of the text describes what happens to a star over time and how to determine this by solving the same equations at different points during a stars lifetime. The fate of various stars is quite different depending on their masses and this is described in the final parts of the book. This text can be used for an upper level undergraduate course or an introductory graduate course on stellar physics.
1 Physical Properties of the Stars 1(18)
1.1 Introduction
1(1)
1.2 Magnitude and Colour Index
1(3)
1.3 Luminosity and Bolometric Correction
4(1)
1.4 Effective Temperature
5(1)
1.5 Spectral Type and Luminosity Class
5(2)
1.6 Mass and Radius
7(4)
1.7 Gravity and Average Density
11(2)
1.8 Rotation
13(1)
1.9 Chemical Composition
14(1)
1.10 Stellar Populations
14(5)
2 Physical Conditions in the Stellar Interior 19(20)
2.1 Introduction
19(1)
2.2 The Mass Continuity Equation
19(2)
2.3 The Hydrostatic Equilibrium Equation
21(5)
2.3.1 Deviations from Hydrostatic Equilibrium
22(2)
2.3.2 The Free-Fall Timescale
24(1)
2.3.3 The Mass Loss Rate in Stars
24(1)
2.3.4 Deviations from Spherical Symmetry
25(1)
2.4 Average Density
26(1)
2.5 Pressure and Temperature
26(2)
2.6 Existence of Thermodynamic Equilibrium
28(1)
2.7 Stellar Energy
29(5)
2.7.1 Thermal Energy
29(1)
2.7.2 Gravitational Energy
30(2)
2.7.3 Nuclear Energy: The Proton—Proton Reaction
32(1)
2.7.4 The Jeans Mass
33(1)
2.8 The Energy Production Rate
34(5)
3 The Electron Gas 39(18)
3.1 Introduction
39(1)
3.2 The Perfect Gas
39(1)
3.3 The Distribution Functions
40(1)
3.4 Pressure of a Perfect Gas
41(2)
3.5 The Mean Molecular Weight
43(2)
3.6 Degeneracy
45(8)
3.6.1 Non-relativistic Degenerate Electrons
48(1)
3.6.2 Relativistic Degenerate Electrons
49(2)
3.6.3 Non-relativistic Partially Degenerate Electrons
51(2)
3.7 Crystallization and Neutronization
53(4)
3.7.1 Crystallization
54(1)
3.7.2 Neutronization
54(3)
4 The Photon Gas 57(10)
4.1 Introduction
57(1)
4.2 The Bose—Einstein Statistics
57(2)
4.2.1 The Energy Density
58(1)
4.2.2 The Radiation Pressure
58(1)
4.3 Concepts of the Radiation Field
59(3)
4.3.1 The Specific Intensity
59(1)
4.3.2 The Mean Intensity
60(1)
4.3.3 Flux
61(1)
4.3.4 Energy Density
61(1)
4.3.5 Radiation Pressure
62(1)
4.3.6 Moments of the Radiation Field
62(1)
4.4 Thermodynamic Equilibrium
62(2)
4.5 Deviations from TE
64(1)
4.6 The Total Pressure
65(2)
5 Adiabatic Processes in the Stellar Interior 67(14)
5.1 Introduction
67(1)
5.2 Stefan—Boltzmann's Law
67(1)
5.3 Specific Heats of a Perfect Gas
68(2)
5.4 Adiabatic Expansion
70(1)
5.5 Effect of the Radiation Pressure
71(2)
5.6 Partially Ionized Gas
73(4)
5.7 Real Gases
77(4)
6 Polytropes 81(18)
6.1 Introduction
81(1)
6.2 Polytropic Variations
81(2)
6.3 The Lane—Emden Equation
83(2)
6.4 Solutions of the Lane—Emden Equation
85(1)
6.5 Interpretation of the Solutions
86(2)
6.6 Examples
88(3)
6.6.1 Example 1: n = 0
88(1)
6.6.2 Example 2: n = 1
89(1)
6.6.3 Example 3: n = 3
90(1)
6.7 Properties of the Polytrope with n = 3
91(8)
6.7.1 Radiation Pressure
91(4)
6.7.2 The Chandrasekhar Mass
95(4)
7 Radiative Equilibrium 99(10)
7.1 Introduction
99(1)
7.2 The Radiation Transfer Equation
99(2)
7.2.1 Solution of the Transfer Equation
100(1)
7.2.2 Kirchhoff's Law
101(1)
7.3 The Radiation Field in the Stellar Interior
101(2)
7.4 The Rosseland Mean
103(2)
7.5 The Radiative Flux
105(1)
7.6 The Mass—Luminosity Relation
106(3)
8 Opacity 109(10)
8.1 Introduction
109(1)
8.2 Interaction Processes Between Matter and Radiation
109(1)
8.3 Bound—Bound Transitions
110(1)
8.4 Bound—Free Transitions
110(3)
8.5 Free—Free Transitions
113(1)
8.6 Electron Scattering
114(1)
8.6.1 The Eddington Limit
114(1)
8.7 Opacity in the p x T Diagram
115(4)
9 Electron Conduction 119(8)
9.1 Introduction
119(1)
9.2 The Mean Free Path
119(1)
9.3 The Conductive Flux
120(2)
9.4 The Conductive Opacity
122(2)
9.5 Conduction by Degenerate Electrons
124(3)
10 Convection 127(10)
10.1 Introduction
127(1)
10.2 Convective Instability
127(1)
10.3 Convection in Stars
128(2)
10.4 The Convective Flux
130(4)
10.4.1 The Mixing Length
132(1)
10.4.2 The Temperature Gradient
132(2)
10.5 The Convection Time Scales
134(1)
10.6 Turbulence
134(3)
11 Thermonuclear Reactions 137(14)
11.1 Introduction
137(1)
11.2 Nuclear Reaction Rates
137(2)
11.3 The Cross Section σ (E)
139(3)
11.3.1 The Collision Cross Section
139(1)
11.3.2 The Probability p(E)
139(1)
11.3.3 The Probability q(E)
140(1)
11.3.4 The Astrophysical S-Factor
141(1)
11.4 Reaction Rates Without Resonances
142(3)
11.5 The Energy Production Rate
145(2)
11.6 Electron Shielding
147(1)
11.7 Resonances
148(3)
12 Energy Production 151(22)
12.1 Introduction
151(1)
12.2 The Proton—Proton Chain
151(3)
12.3 The CNO Cycle
154(3)
12.4 The Triple-a Process
157(1)
12.5 Stellar Evolution and Nucleosynthesis
158(15)
12.5.1 Massive Stars
159(4)
12.5.2 Neutron Capture Processes
163(1)
12.5.3 Intermediate and Low Mass Stars
164(1)
12.5.4 Neutrinos
165(1)
12.5.5 Solar Neutrinos
166(1)
12.5.6 Photoneutrinos
167(1)
12.5.7 Pair Production
168(1)
12.5.8 Plasma Processes
168(1)
12.5.9 Bremsstrahlung
169(1)
12.5.10 The Urca Process
169(4)
13 Calculation of the Stellar Structure 173(18)
13.1 Introduction
173(1)
13.2 Equations of the Stellar Structure
173(2)
13.3 Solution of the System of Equations
175(4)
13.3.1 Integration from r = 0
176(1)
13.3.2 Integration from r = R
176(1)
13.3.3 The Vogt—Russell Theorem
177(1)
13.3.4 Homology Transformations
178(1)
13.3.5 Evolutionary Sequences
179(1)
13.4 An Example of Stellar Structure Models: The Sun
179(3)
13.5 The Main Sequence
182(2)
13.6 Processes Affecting Stellar Structure
184(7)
13.6.1 Mass Loss
184(1)
13.6.2 Binary Systems
185(1)
13.6.3 Pulsation and Variability
186(2)
13.6.4 Rotation and Magnetic Fields
188(3)
A Constants and Units 191(2)
Solutions 193(18)
Index 211
Dr. Walter J. Maciel received his Bachelors in Physics from Federal University of Minas Gerais (1970), his MSc in Astronomy from the Aeronautics Technology Institute (1973) and a PhD in Astronomy from the University of Sćo Paulo (1977). Dr. Maciel is a full professor of astronomy at the University of Sćo Paulo and has been at the university for over 35 years. He is the author of three books published by EdUSP, the biggest Brazilian university press. He received the Jabuti prize in 2000 for the Portuguese edition of this book; his other two books, Astrophysics of the Interstellar Medium and Hydrodynamics and Stellar Winds: An Introduction, were among the finalists in 2003 and 2006, respectively. Both of these books have been published in English with Springer.