Atjaunināt sīkdatņu piekrišanu

Introduction to Tunnel Construction 2nd edition [Mīkstie vāki]

(University of Birmingham, United Kingdom), ,
  • Formāts: Paperback / softback, 425 pages, height x width: 254x178 mm, weight: 881 g, 43 Tables, black and white; 7 Line drawings, color; 167 Line drawings, black and white; 78 Halftones, color; 125 Halftones, black and white
  • Sērija : Applied Geotechnics
  • Izdošanas datums: 18-Dec-2017
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498766242
  • ISBN-13: 9781498766241
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 52,65 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 74,07 €
  • Ietaupiet 29%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Paperback / softback, 425 pages, height x width: 254x178 mm, weight: 881 g, 43 Tables, black and white; 7 Line drawings, color; 167 Line drawings, black and white; 78 Halftones, color; 125 Halftones, black and white
  • Sērija : Applied Geotechnics
  • Izdošanas datums: 18-Dec-2017
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498766242
  • ISBN-13: 9781498766241
Citas grāmatas par šo tēmu:
Tunnelling provides a robust solution to a variety of engineering challenges. It is a complex process, which requires a firm understanding of the ground conditions as well as the importance of ground-structure interaction. This book covers the full range of areas related to tunnel construction required to embark upon a career in tunnelling. It also includes a number of case studies related to real tunnel projects, to demonstrate how the theory applies in practice. New features of this second edition include: the introduction of a case study related to Crossrails project in London, focussing on the Whitechapel and Liverpool Street station tunnels and including considerations of building tunnels in a congested urban area; and further information on recent developments in tunnel boring machines, including further examples of all the different types of machine as well as multi-mode machines.

The coverage includes:











Both hard-rock and soft-ground conditions





Site investigation, parameter selection, and design considerations





Methods of improving the stability of the ground and lining techniques





Descriptions of the various main tunnelling techniques





Health and safety considerations





Monitoring of tunnels during construction





Description of the latest tunnel boring machines





Case studies with real examples, including Crossrails project in London

Clear, concise, and heavily illustrated, this is a vital text for final-year undergraduate and MSc students and an invaluable starting point for young professionals and novices in tunnelling.

Recenzijas

"The authors have packaged the information with a very wide range of tables, figures, key equations and source references. Many readers will find all they ever wanted to know about tunnel construction without leaving its pages; while those for whom it whets the appetite to dig deeper (pun intended!) will find comprehensive pointers to up-to-date sources of literature elsewhere."

-- Andrew Dawson, Nottingham University, UK

Abbreviations xv
Symbols xvii
Preface to the second edition xxi
Preface to the first edition xxiii
Acknowledgements and permissions xxv
Authors xxix
1 Introduction 1(6)
1.1 Philosophy of tunnelling
1(1)
1.2 Scope of this book
2(1)
1.3 Historical context
2(3)
1.4 The nature of the ground
5(1)
1.5 Tunnel cross section terminology
5(1)
1.6 Content and layout of this book
6(1)
2 Site investigation 7(52)
2.1 Introduction
7(1)
2.2 Site investigation during a project
8(2)
2.2.1 Introduction
8(1)
2.2.2 Desk study
8(1)
2.2.3 Site reconnaissance
9(1)
2.2.4 Ground investigation (overview)
9(1)
2.3 Ground investigation
10(27)
2.3.1 Introduction
10(1)
2.3.2 Field investigations
10(18)
2.3.3 Laboratory tests
28(8)
2.3.4 Hydrogeological model
36(1)
2.4 Ground characteristics/parameters
37(18)
2.4.1 Influence of layering on Young's modulus
40(1)
2.4.2 Squeezing and swelling ground
41(1)
2.4.3 Typical ground parameters for tunnel design
42(1)
2.4.4 Ground (rock mass) classification
43(12)
2.5 Site investigation reports
55(4)
2.5.1 Types of site investigation report
55(1)
2.5.2 Key information for tunnel design
56(3)
3 Preliminary analyses for the tunnel 59(18)
3.1 Introduction
59(1)
3.2 Primary stress pattern in the ground
59(2)
3.3 Stability of soft ground
61(4)
3.3.1 Stability of fine-grained soils
61(2)
3.3.2 Stability of coarse-grained soils
63(2)
3.4 The coefficient of lateral earth pressure (K0)
65(2)
3.4.1 Lateral pressure in a silo
65(2)
3.5 Preliminary analytical methods
67(4)
3.5.1 Introduction
67(2)
3.5.2 Bedded-beam spring method
69(1)
3.5.3 Continuum method
69(1)
3.5.4 Tunnel support resistance method
70(1)
3.6 Preliminary numerical modelling
71(6)
3.6.1 Introduction
71(1)
3.6.2 Modelling the tunnel construction in 2-D
72(2)
3.6.3 Modelling the tunnel construction in 3-D
74(1)
3.6.4 Choice of ground and lining constitutive models
75(2)
4 Ground improvement techniques and lining systems 77(40)
4.1 Introduction
77(1)
4.2 Ground improvement and stabilisation techniques
77(22)
4.2.1 Ground freezing
77(5)
4.2.2 Lowering of the groundwater table
82(2)
4.2.3 Grouting
84(3)
4.2.4 Ground reinforcement
87(3)
4.2.5 Forepoling
90(2)
4.2.6 Face dowels
92(1)
4.2.7 Roof pipe umbrella
92(1)
4.2.8 Compensation grouting
93(3)
4.2.9 Pressurised tunnelling (compressed air)
96(3)
4.3 Tunnel lining systems
99(18)
4.3.1 Lining design requirements
99(1)
4.3.2 Sprayed concrete (shotcrete)
100(3)
4.3.3 Ribbed systems
103(1)
4.3.4 Segmental linings
104(8)
4.3.5 In situ concrete linings
112(1)
4.3.6 Fire resistance of concrete linings
112(5)
5 Tunnel construction techniques 117(126)
5.1 Introduction
117(1)
5.2 Open face construction without a shield
118(1)
5.2.1 Timber heading
118(1)
5.2.2 Open face tunnelling with alternative linings
118(1)
5.3 Partial face boring machine (roadheader)
119(2)
5.4 Tunnelling shields
121(6)
5.4.1 Examples of shields with partial excavation
125(2)
5.5 Tunnel boring machines
127(32)
5.5.1 Introduction
127(3)
5.5.2 TBMs in hard rock
130(11)
5.5.3 TBMs in soft ground
141(15)
5.5.4 Multimode TBMs
156(3)
5.5.5 Non-circular TBMs
159(1)
5.6 Drill and blast tunnelling
159(23)
5.6.1 Introduction
159(2)
5.6.2 Drilling
161(1)
5.6.3 Charging
162(2)
5.6.4 Stemming
164(1)
5.6.5 Detonating
164(10)
5.6.6 Ventilation
174(2)
5.6.7 Mucking and support
176(1)
5.6.8 Example of drill and blast cycle timings
176(1)
5.6.9 The Norwegian method of tunnelling (NMT)
177(3)
5.6.10 Drill and blast versus TBM excavation
180(2)
5.7 NATM and SCL
182(8)
5.7.1 New Austrian Tunnelling Method
182(5)
5.7.2 Sprayed concrete lining
187(1)
5.7.3 LaserShell™ technique
188(2)
5.8 Cut-and-cover tunnels
190(8)
5.8.1 Introduction
190(1)
5.8.2 Construction methods
191(1)
5.8.3 Design issues
192(1)
5.8.4 Excavation support methods (shoring systems) for the sides of the excavation
193(5)
5.9 Immersed tube tunnels
198(12)
5.9.1 Introduction
198(1)
5.9.2 Stages of construction for immersed tube tunnels
199(3)
5.9.3 Types of immersed tube tunnel
202(3)
5.9.4 Immersed tube tunnel foundations and settlements
205(1)
5.9.5 Joints between tube elements
205(1)
5.9.6 Analysis and design
206(1)
5.9.7 Examples of immersed tube tunnels
207(3)
5.10 Jacked box tunnelling
210(12)
5.10.1 Introduction
210(1)
5.10.2 Outline of the method and description of key components
211(4)
5.10.3 Examples of jacked box tunnels
215(7)
5.11 Pipe jacking and microtunnelling
222(11)
5.11.1 Introduction
222(3)
5.11.2 The pipe jacking construction process
225(8)
5.11.3 Maximum drive length for pipe jacking and microtunnelling
233(1)
5.11.4 Examples of pipe jacking and microtunnelling projects
233(1)
5.12 Horizontal directional drilling
233(10)
5.12.1 Examples of large HDD installations
238(5)
6 Health and safety, and risk management in tunnelling 243(18)
6.1 The health and safety hazards of tunnel construction
243(11)
6.1.1 Introduction
243(1)
6.1.2 Hazards in tunnelling
244(1)
6.1.3 Techniques for risk management
244(1)
6.1.4 Legislation, accidents and ill health statistics
244(1)
6.1.5 Role of the client, designer and contractors
245(1)
6.1.6 Ground risk
246(1)
6.1.7 Excavation and lining methods
247(2)
6.1.8 Tunnel transport
249(1)
6.1.9 Tunnel atmosphere and ventilation
249(1)
6.1.10 Explosives
250(1)
6.1.11 Fire, flood rescue and escape
250(1)
6.1.12 Occupational health
251(1)
6.1.13 Welfare and first aid
252(1)
6.1.14 Work in compressed air
252(1)
6.1.15 Education, training and competence
253(1)
6.1.16 Shafts
253(1)
6.1.17 Concluding remarks
254(1)
6.2 Risk management in tunnelling projects
254(7)
6.2.1 Introduction
254(2)
6.2.2 Risk identification
256(1)
6.2.3 Analysing risks
257(1)
6.2.4 Evaluating risks
257(1)
6.2.5 Risk monitoring and reviewing
258(3)
7 Ground movements and monitoring 261(46)
7.1 Ground deformation in soft ground
261(9)
7.1.1 Surface settlement profiles
262(6)
7.1.2 Horizontal displacements
268(1)
7.1.3 Long-term settlements
269(1)
7.1.4 Multiple tunnels
270(1)
7.2 Effects of tunnelling on surface and subsurface structures
270(8)
7.2.1 Effect of tunnelling on existing tunnels, buried utilities and piled foundations
272(3)
7.2.2 Design methodology
275(3)
7.3 Monitoring
278(29)
7.3.1 Challenges and purpose
278(2)
7.3.2 Trigger values
280(1)
7.3.3 Observational method
280(2)
7.3.4 In-tunnel monitoring during NATM tunnelling operations
282(16)
7.3.5 Instrumentation for in-tunnel and ground monitoring
298(3)
7.3.6 Instrumentation for monitoring of existing structures
301(6)
8 Case studies 307(88)
8.1 Eggetunnel, Germany
307(7)
8.1.1 Project overview
307(1)
8.1.2 Invert failure of the total cross section in the Eggetunnel
308(1)
8.1.3 Sprayed concrete invert: Its purpose and monitoring
309(5)
8.2 London Heathrow T5, UK: Construction of the Piccadilly Line Extension Junction
314(10)
8.2.1 Project overview
314(1)
8.2.2 The 'Box'
314(2)
8.2.3 Construction of SCL tunnels
316(1)
8.2.4 Ground conditions
316(1)
8.2.5 The LaserShell™ method
317(2)
8.2.6 TunnelBeamer™
319(1)
8.2.7 Monitoring
319(5)
8.3 Lainzer Tunnel LT31, Vienna, Austria
324(11)
8.3.1 Project overview
324(2)
8.3.2 Geology
326(1)
8.3.3 Starting construction from the shafts
326(2)
8.3.4 Sidewall drift section: Excavation sequence and cross section
328(4)
8.3.5 Monitoring of SCL of the sidewall drift section
332(1)
8.3.6 Cracks in SCL
332(3)
8.4 London Crossrail, UK: Construction of Whitechapel Station and Liverpool Street Station tunnels
335(24)
8.4.1 Project overview
336(1)
8.4.2 Whitechapel Station and Valiance Road Crossover
337(4)
8.4.3 Liverpool Street Station
341(1)
8.4.4 Logistics
342(4)
8.4.5 Geology and site investigation
346(4)
8.4.6 Existing tunnels, buildings and other assets and their protection
350(3)
8.4.7 Uphill Excavator
353(3)
8.4.8 The Utilisation method
356(3)
8.5 Further examples of TBMs and shaft construction
359(16)
8.5.1 Introduction
359(1)
8.5.2 Gripper TBM (Section 5.5.2)
359(1)
8.5.3 Single-shield TBM (Section 5.5.2.2)
360(2)
8.5.4 Double-shield TBM (Section 5.5.2.2)
362(1)
8.5.5 Slurry TBMs (Section 5.5.3.2)
363(1)
8.5.6 Earth pressure balance machines (Section 5.5.3.3)
363(4)
8.5.7 Multimode TBMs (Section 5.5.4)
367(3)
8.5.8 Shaft construction
370(5)
References
375(20)
Appendix A: Further information on rock mass classification systems 395(12)
Appendix B: Analytical calculation of a sprayed concrete lining using the continuum method 407(10)
Index 417
David Chapman is Professor of Geotechnical and Underground Engineering at the University of Birmingham, UK.

Nicole Metje is a Reader in Infrastructure Monitoring at the University of Birmingham, UK.

Alfred Stärk is Senior Tunnelling Manager with the tunnelling contractor BeMo Tunnelling GmbH, Innsbruck, Austria.