Atjaunināt sīkdatņu piekrišanu

Introduction to Vector and Tensor Analysis New edition [Mīkstie vāki]

  • Formāts: Paperback / softback, 430 pages, height x width x depth: 214x135x22 mm, weight: 445 g
  • Sērija : Dover Books on Mathema 1.4tics
  • Izdošanas datums: 28-Mar-2003
  • Izdevniecība: Dover Publications Inc.
  • ISBN-10: 048661879X
  • ISBN-13: 9780486618791
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 24,80 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 430 pages, height x width x depth: 214x135x22 mm, weight: 445 g
  • Sērija : Dover Books on Mathema 1.4tics
  • Izdošanas datums: 28-Mar-2003
  • Izdevniecība: Dover Publications Inc.
  • ISBN-10: 048661879X
  • ISBN-13: 9780486618791
Citas grāmatas par šo tēmu:
Text for advanced undergraduate and graduate students covers the algebra, differentiation, and integration of vectors, and the algebra and analysis of tensors, with emphasis on transformation theory
the algebra of vectors
1(123)
Historical summary
1(6)
Introductory concepts
7(16)
Linear dependence or independence of a set of number n-tuples
23(12)
Transformation equations relating rectangular Cartesian coordinate systems
35(16)
Definitions of Cartesian scalar and vector
51(5)
The inner product
56(9)
General Cartesian coordinates
65(20)
&epsis; systems and determinants
85(11)
The cross product
96(15)
&epsis; systems and the cross product in general Cartesian systems
111(3)
The algebra of matrices
114(9)
the differentiation of vectors
123(73)
The differentiation of vectors
123(16)
Geometry of space curves
139(8)
Kinematics
147(8)
Moving frames of reference
155(11)
A tensor formulation of the theory of rotating frames of reference
166(5)
Newtonian orbits
171(5)
An introduction to Einstein's special theory of relativity
176(20)
partial differentiation and associated concepts
196(58)
Surface representations
196(9)
Vector concepts associated with partial differentiation
205(13)
Identities involving ∇
218(2)
Bases in general coordinate systems
220(17)
Vector concepts in curvilinear orthogonal coordinate systems
237(8)
Maxima and minima of functions of two variables
245(9)
integration of vectors
254(50)
Line integrals
255(15)
Surface integrals
270(12)
An introduction to surface tensors and surface invariants
282(6)
Volume integrals
288(3)
Integral theorems
291(13)
tensor algebra and analysis
304(79)
Fundamental notions in n-space
305(10)
Transformations and tensors
315(9)
Riemannian geometry
324(7)
Tensor processes of differentiation
331(10)
Geodesics
341(7)
The parallelism of Levi-Civita
348(6)
The curvature tensor
354(7)
Algebraic properties of the curvature tensor
361(10)
An introduction to the general theory of relativity
371(12)
answers to odd-numbered problems 383(28)
index 411