Preface |
|
ix | |
Prerequisites |
|
1 | (2) |
P1 Exploring Mathematical Statements |
|
3 | (18) |
|
P1.1 What is a mathematical statement? |
|
|
3 | (2) |
|
|
5 | (5) |
|
P1.3 Quantifiers, both existential and universal |
|
|
10 | (2) |
|
P1.4 Implication: the heart of a "provable" mathematical statement |
|
|
12 | (1) |
|
|
13 | (4) |
|
P1.6 Statements related to implication |
|
|
17 | (4) |
P2 Proving Mathematical Statements |
|
21 | (14) |
|
|
21 | (1) |
|
P2.2 Proving a basic statement with an existential quantifier |
|
|
22 | (1) |
|
P2.3 Proving a basic statement with a universal quantifier |
|
|
23 | (1) |
|
P2.4 Proving an implication directly |
|
|
24 | (2) |
|
P2.5 Proof by contrapositive |
|
|
26 | (1) |
|
P2.6 Proof involving cases |
|
|
27 | (1) |
|
P2.7 Proof by contradiction |
|
|
28 | (1) |
|
|
29 | (4) |
|
P2.9 Proving that one of two (or one of several) conclusions is true |
|
|
33 | (2) |
P3 Preliminary Content |
|
35 | (10) |
|
P3.1 Relations and equivalence |
|
|
35 | (2) |
|
|
37 | (4) |
|
P3.3 Inequalities and epsilons |
|
|
41 | (4) |
1 Properties of R |
|
45 | (14) |
|
|
46 | (2) |
|
|
48 | (8) |
|
|
56 | (3) |
2 Accumulation Points and Closed Sets |
|
59 | (6) |
|
|
59 | (1) |
|
|
60 | (2) |
|
|
62 | (3) |
3 Open Sets and Open Covers |
|
65 | (6) |
|
|
65 | (2) |
|
|
67 | (2) |
|
|
69 | (2) |
4 Sequences and Convergence |
|
71 | (12) |
|
|
71 | (4) |
|
|
75 | (3) |
|
|
78 | (5) |
5 Subsequences and Cauchy Sequences |
|
83 | (10) |
|
|
83 | (3) |
|
|
86 | (1) |
|
|
87 | (6) |
6 Functions, Limits, and Continuity |
|
93 | (8) |
|
|
94 | (2) |
|
|
96 | (2) |
|
|
98 | (3) |
7 Connected Sets and the Intermediate Value Theorem |
|
101 | (8) |
|
|
101 | (1) |
|
|
102 | (2) |
|
|
104 | (5) |
8 Compact Sets |
|
109 | (6) |
|
|
109 | (3) |
|
|
112 | (1) |
|
|
113 | (2) |
9 Uniform Continuity |
|
115 | (4) |
|
|
115 | (1) |
|
|
116 | (2) |
|
|
118 | (1) |
10 Introduction to the Derivative |
|
119 | (6) |
|
|
119 | (2) |
|
|
121 | (2) |
|
|
123 | (2) |
11 The Extreme and Mean Value Theorems |
|
125 | (8) |
|
|
125 | (1) |
|
|
126 | (2) |
|
|
128 | (5) |
12 The Definite Integral: Part I |
|
133 | (10) |
|
|
134 | (4) |
|
|
138 | (1) |
|
|
139 | (4) |
13 The Definite Integral: Part II |
|
143 | (8) |
|
|
143 | (2) |
|
|
145 | (3) |
|
|
148 | (3) |
14 The Fundamental Theorem(s) of Calculus |
|
151 | (8) |
|
|
151 | (1) |
|
|
152 | (4) |
|
|
156 | (3) |
15 Series |
|
159 | (16) |
|
|
160 | (2) |
|
|
162 | (8) |
|
|
170 | (5) |
Extended Explorations |
|
175 | (54) |
|
E1 Function Approximation |
|
|
177 | (10) |
|
E1.1 Taylor Polynomials and Taylor's Theorem |
|
|
177 | (3) |
|
|
180 | (4) |
|
|
184 | (1) |
|
|
185 | (2) |
|
|
187 | (12) |
|
E2.1 Introduction to Power Series |
|
|
187 | (1) |
|
E2.2 Differentiation of a Power Series |
|
|
188 | (5) |
|
|
193 | (6) |
|
E3 Sequences and Series of Functions |
|
|
199 | (8) |
|
E3.1 Pointwise Convergence |
|
|
199 | (1) |
|
E3.2 Uniform Convergence and Uniformly Cauchy Sequences of Functions |
|
|
200 | (2) |
|
E3.3 Consequences of Uniform Convergence |
|
|
202 | (5) |
|
|
207 | (12) |
|
E4.1 What is a Metric Space? Examples |
|
|
207 | (3) |
|
E4.2 Metric Space Completeness |
|
|
210 | (3) |
|
E4.3 Metric Space Compactness |
|
|
213 | (6) |
|
E5 Iterated Functions and Fixed Point Theorems |
|
|
219 | (10) |
|
E5.1 Iterative Maps and Fixed Points |
|
|
219 | (4) |
|
E5.2 Contraction Mappings |
|
|
223 | (2) |
|
|
225 | (4) |
Appendix |
|
229 | (4) |
|
A Brief Summary of Ordered Field Properties |
|
|
231 | (2) |
Bibliography |
|
233 | (2) |
Index |
|
235 | |