Atjaunināt sīkdatņu piekrišanu

Introductory Tiling Theory for Computer Graphics [Mīkstie vāki]

Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 59,85 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
Citas grāmatas par šo tēmu:
Tiling theory is an elegant branch of mathematics that has applications in several areas of computer science. The most immediate application area is graphics, where tiling theory has been used in the contexts of texture generation, sampling theory, remeshing, and of course the generation of decorative patterns. The combination of a solid theoretical base (complete with tantalizing open problems), practical algorithmic techniques, and exciting applications make tiling theory a worthwhile area of study for practitioners and students in computer science. This synthesis lecture introduces the mathematical and algorithmic foundations of tiling theory to a computer graphics audience. The goal is primarily to introduce concepts and terminology, clear up common misconceptions, and state and apply important results. The book also describes some of the algorithms and data structures that allow several aspects of tiling theory to be used in practice.
Preface ix
Introduction
1(2)
Organization
1(2)
Tiling Basics
3(8)
Defining tilings
3(2)
Anatomy of a tiling
5(1)
Patches
6(1)
Tilings with congruent tiles
7(4)
Symmetry
11(18)
The set of symmetries
11(1)
Symmetry groups
12(5)
Factoring out repetition
17(1)
Periodic replication
18(2)
Symmetries of tilings
20(2)
Other forms of symmetry
22(7)
Colour symmetry
22(2)
Symmetry in other spaces
24(1)
Orbifolds
24(5)
Tilings by Polygons
29(6)
Regular and uniform tilings
30(1)
Laves tilings
31(4)
Isohedral Tilings
35(20)
Basic definitions
35(2)
Isohedral tiling types
37(3)
Parameterizing the isohedral tilings
40(4)
Edge shape parameterization
40(1)
Tiling vertex parameterization
41(3)
Data structures and algorithms for IH
44(6)
Representing tiling vertex parameterizations
45(1)
Computing transformation matrices
45(2)
Colourings
47(1)
Tiling edge shapes
48(1)
Isohedral templates and prototiles
48(2)
Beyond isohedral tilings
50(5)
Nonperiodic and Aperiodic Tilings
55(16)
Substitution tilings and rep-tiles
57(5)
Wang tiles and Aperiodicity
62(2)
Penrose tilings
64(7)
Survey
71(28)
Drawing periodic tilings
71(1)
Drawing nonperiodic tilings
71(1)
Escher-like tilings
72(1)
Sampling
73(1)
Texture generation
73(26)
The Isohedral Tiling Types
75(24)
Bibliography 99(4)
Biography 103