Atjaunināt sīkdatņu piekrišanu

E-grāmata: Intumescent Coating and Fire Protection of Steel Structures

(Tongji University, China), (Huaqiao University, China), (AkzoNobel Marine, Protective & Yacht Coatings, China), (Tongji University, China)
  • Formāts: 172 pages
  • Izdošanas datums: 20-Apr-2023
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000855937
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 112,70 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 172 pages
  • Izdošanas datums: 20-Apr-2023
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000855937
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Intumescent Coating and Fire Protection of Steel Structures establishes the thermo insulation characteristics of intumescent coating under various fire and hydrothermal aging circumstances and shows how to predict the temperature elevation of steel structures protected with intumescent coatings in fires for avoiding structural damage.

Introduced are the features and applications of intumescent coatings for protecting steel structures against fire. The constant effective thermal conductivity is defined and employed to simplify the quantification for the thermo-resistance of intumescent coatings. An experimental investigation into the hydrothermal aging effects on insulative properties of intumescent coatings is presented, as well as the influence of topcoat on insulation and aging of intumescent coatings. Also described is a practical method for calculating the temperature of the protected steel structures with intumescent coatings in order to evaluate the fire safety of a structure.

The book is aimed at fire and structural engineers, as well as researchers and students concerned with the protection of steel structures.
Authors xi
1 Introduction to intumescent coatings
1(28)
1.1 Damage of steel structures in fire
1(4)
1.2 Types of insulative coatings for protecting steel structures against fire
5(4)
1.2.1 Active fire protection and passive fire protection
5(1)
1.2.2 Non-intumescent and intumescent types of fire insulation for steel structures
6(1)
1.2.2.1 Non-intumescent coatings and boards
6(1)
1.2.2.2 Intumescent coatings
7(2)
1.3 Application of intumescent coatings for protecting steel structures
9(11)
1.3.1 Advantages of intumescent coatings
9(1)
1.3.2 Key points of application
10(2)
1.3.2.1 Weather resistance
12(1)
1.3.2.2 Using topcoats to improve water resistance
12(1)
1.3.2.3 Fire protection of connections
13(1)
1.3.2.4 Maintenance
13(2)
1.3.3 Typical steel structure projects protected with intumescent coatings
15(1)
1.3.3.1 Shanghai Tower building
15(1)
1.3.3.2 Chengdu Tianfu New International Airport
16(2)
1.3.3.3 Semiconductor manufacturing plants
18(2)
1.4 Mechanism of intumescent coatings for fire protection of steel structures
20(3)
1.5 Main issues of intumescent coatings for protecting steel structures
23(6)
1.5.1 Determining the thermal resistance of intumescent coatings
23(1)
1.5.2 Behaviour of intumescent coatings under large space fires
24(1)
1.5.3 Behaviour of intumescent coatings under localized fires
25(1)
1.5.4 Ageing effect of intumescent coatings
26(1)
1.5.5 Influence of the topcoats on the fire protection of intumescent coatings
26(1)
1.5.6 Temperature prediction of steel substrates protected by intumescent coatings
26(1)
References
27(2)
2 Determining the thermal resistance of intumescent coatings
29(20)
2.1 Definition and usage of the thermal conductivity of materials
29(2)
2.2 Thermal conductivity of intumescent coatings
31(1)
2.2.1 Time-dependent thermal conductivity
31(1)
2.2.2 Effective thermal conductivity
31(1)
2.2.3 Constant effective thermal conductivity
32(1)
2.3 Tests for determining the constant effective thermal conductivity of intumescent coatings
32(13)
2.3.1 Test specimens
32(4)
2.3.2 Test setup
36(3)
2.3.3 Test results and discussions
39(1)
2.3.3.1 Furnace and steel temperatures
39(1)
2.3.3.2 Effective thermal conductivity
40(1)
2.3.3.3 Constant effective thermal conductivity
41(2)
2.3.3.4 Comparison of constant effective thermal conductivity between various specimens
43(2)
2.4 Use of constant effective thermal conductivities for intumescent coatings
45(1)
2.5 Summary
46(3)
References
46(3)
3 Behaviour of intumescent coatings under large space fires
49(20)
3.1 Fire conditions
49(1)
3.2 Test preparation
49(5)
3.2.1 Test specimens
49(3)
3.2.2 Fire protection
52(1)
3.2.3 Test setup
52(2)
3.3 Experimental measurements and observations of intumescent coating behaviour
54(2)
3.4 The three-stage model of thermal conductivity
56(7)
3.4.1 Temperature dependent effective thermal conductivity
56(2)
3.4.2 Constant effective thermal conductivities
58(2)
3.4.3 Inter-fire relationships for three-stage constant effective thermal conductivities
60(3)
3.5 Applicability of the three-stage constant effective thermal conductivity model
63(2)
3.5.1 Calculation of protected steel temperature with the three-stage thermal model
63(1)
3.5.2 Effectiveness of the three-stage thermal conductivity model
64(1)
3.6 Summary
65(4)
References
66(3)
4 Behaviour of intumescent coatings exposed to localized fires
69(22)
4.1 Localized fire and test setup
69(3)
4.2 Test specimens
72(3)
4.2.1 Steel members
72(1)
4.2.2 Thermocouples
72(2)
4.2.3 Fire protection
74(1)
4.3 Observation of the localized fire
75(2)
4.3.1 Flame
75(1)
4.3.2 Fire temperature distributions
75(2)
4.4 Performance of intumescent coatings
77(12)
4.4.1 Reactions of intumescent coatings
77(3)
4.4.2 Cracking of intumescent coatings
80(3)
4.4.3 Expansion of intumescent coatings
83(4)
4.4.4 Temperature-dependent effective thermal conductivity of intumescent coatings
87(1)
4.4.5 Validation of three-stage model for the thermal resistance of intumescent coatings under localized fires
88(1)
4.5 Summary
89(2)
References
90(1)
5 Hydrothermal ageing effects on the insulative properties of intumescent coatings
91(18)
5.1 Ageing mechanism of intumescent coatings in a hydrothermal environment
91(5)
5.1.1 Test preparation
92(1)
5.1.2 FTIR test results
92(2)
5.1.3 XPS test results
94(2)
5.2 Degradation of intumescent coatings due to ageing in a hydrothermal environment
96(7)
5.2.1 Test specimens with intumescent coatings
96(1)
5.2.2 Hydrothermal ageing tests
97(2)
5.2.3 Fire tests
99(4)
5.3 Assessment of insulative properties of aged intumescent coatings
103(4)
5.3.1 Effect on the temperature elevation of steel substrates
103(3)
5.3.2 Effect on the effective thermal conductivity of coatings
106(1)
5.4 Summary
107(2)
References
107(2)
6 Influence of topcoats on insulation and the anti-ageing performance of intumescent coatings
109(24)
6.1 Effect of a topcoats on restraining expansion and the thermal resistance of intumescent coatings
109(12)
6.1.1 Specimen preparation
110(1)
6.1.2 Fire tests
110(1)
6.1.3 Test results
110(1)
6.1.3.1 Appearance and expansion of intumescent coatings
110(5)
6.1.3.2 Steel temperatures
115(3)
6.1.3.3 Constant effective thermal conductivity
118(3)
6.2 Effect of topcoats on the ageing of intumescent coatings
121(9)
6.2.1 Specimen preparation
121(1)
6.2.2 Hydrothermal ageing test
122(1)
6.2.3 Fire test
122(3)
6.2.3.1 Surface appearance of specimens
125(1)
6.2.3.2 Microstructures of intumescent coating chars
126(1)
6.2.3.3 Effect on expansion ratios
127(1)
6.2.3.4 Effect on the temperature elevations of steel substrates
128(2)
6.3 Summary
130(3)
References
131(2)
7 Predicting the temperatures of steel substrates with intumescent coatings under non-uniform fire heating conditions
133(12)
7.1 Steel temperature calculation method
133(1)
7.2 Division of steel members exposed to non-uniform fire heating conditions
134(2)
7.2.1 Division of steel members into segments
134(1)
7.2.2 Division of a cross-section into plates
134(2)
7.3 Gas temperature distribution of localized fires
136(1)
7.4 Temperature distributions of steel members exposed to localized fires
137(7)
7.4.1 Comparison of steel temperature distributions along member length
137(1)
7.4.2 Comparison of steel temperature distributions across member section
137(3)
7.4.3 Comparison of steel temperature-time curves
140(4)
7.5 Summary
144(1)
References
144(1)
Index 145
Guo-Qiang Li is a professor of structural engineering at Tongji University, China, director of the Research Centre of the Education Ministry of China for Steel Construction and director of the National Research Centre of China for Pre-fabrication Construction.

Ling-Ling Wang is an associate professor of Structural Engineering at Huaqiao University, China.

Qing Xu is an assistant professor of structural engineering at the University of Shanghai for Science and Technology, China.

Jun-Wei Ge is a Product Manager at AkzoNobel Marine, Protective & Yacht Coatings in China.