Atjaunināt sīkdatņu piekrišanu

Investigation of Staged Laser-Plasma Acceleration 2015 ed. [Hardback]

  • Formāts: Hardback, 121 pages, height x width: 235x155 mm, weight: 3376 g, 66 Illustrations, color; 5 Illustrations, black and white; XVII, 121 p. 71 illus., 66 illus. in color., 1 Hardback
  • Sērija : Springer Theses
  • Izdošanas datums: 04-Aug-2014
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319085689
  • ISBN-13: 9783319085685
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 121 pages, height x width: 235x155 mm, weight: 3376 g, 66 Illustrations, color; 5 Illustrations, black and white; XVII, 121 p. 71 illus., 66 illus. in color., 1 Hardback
  • Sērija : Springer Theses
  • Izdošanas datums: 04-Aug-2014
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319085689
  • ISBN-13: 9783319085685
This thesis establishes an exciting new beginning for Laser Plasma Accelerators (LPAs) to further develop toward the next generation of compact high energy accelerators.

Design, installation and commissioning of a new experimental setup at LBNL played an important role and are detailed through three critical components: e-beam production, reflection of laser pulses with a plasma mirror and large wake excitation below electron injection threshold.

Pulses from a 40 TW peak power laser system were split into a 25 TW pulse and a 15 TW pulse. The first pulse was used for e-beam production in the first module and the second pulse was used for wake excitation in the second module to post-accelerate the e-beam. As a result, reliable e-beam production and efficient wake excitation necessary for the staged acceleration were independently demonstrated.

These experiments have laid the foundation for future staging experiments at the 40 TW peak power level.
1 General Introduction
1(6)
1.1 Conventional Versus Plasma-Based Acceleration
1(2)
1.2 Laser-Plasma Acceleration
3(1)
1.3 About the Thesis
4(3)
2 Laser-Plasma Accelerators
7(24)
2.1 Introduction
7(1)
2.2 Generation of Intense Laser Pulses
8(2)
2.2.1 Chirped Pulse Amplification
8(1)
2.2.2 TREX Laser System
9(1)
2.3 Theory of Laser Propagation
10(5)
2.3.1 Laser Diffraction
10(2)
2.3.2 Laser Guiding in Plasma Channel
12(2)
2.3.3 Relativistic Self-focusing
14(1)
2.4 Plasma Waves
15(12)
2.4.1 Plasma Wave Excitation
15(6)
2.4.2 Electron Acceleration and Dephasing
21(1)
2.4.3 Electron Beam Production
22(5)
2.5 Limitations to Energy Gain
27(3)
2.5.1 Acceleration Limits
27(2)
2.5.2 Scaling Laws for Energy Gain
29(1)
2.6 Summary and Conclusions
30(1)
3 Staged Laser-Plasma Accelerator: Introduction
31(8)
3.1 Introduction
31(1)
3.2 Experimental Design
31(1)
3.3 Experimental Configuration
32(4)
3.4 Summary and Conclusions
36(3)
4 Injection Module
39(22)
4.1 Introduction
39(1)
4.2 Experiments on Electron Beam Production at 40 TW
40(7)
4.2.1 Experimental Configuration
40(1)
4.2.2 Electron Beam Production via Self-trapping
41(1)
4.2.3 Electron Beam Production via Ionization of N2
42(2)
4.2.4 Electron Beam Production with Tailored Plasma Density
44(3)
4.3 Characterizations of Electron Beams
47(4)
4.3.1 Slice Energy Spread Measurement
47(3)
4.3.2 Emittance Measurement
50(1)
4.4 Experiments on Electron Production at 25 TW
51(2)
4.5 Implications for 1st Module
53(5)
4.5.1 Emittance Preservation Between Stages
54(3)
4.5.2 Electron Beam Capturing Conditions at 2nd Module
57(1)
4.6 Summary and Conclusions
58(3)
5 Plasma Mirror
61(12)
5.1 Introduction
61(2)
5.2 Theoretical Framework of Plasma Mirror
63(2)
5.3 Experimental Configuration and Results
65(5)
5.4 Electron Beam Interaction with Plasma Mirror
70(2)
5.5 Summary and Conclusions
72(1)
6 Acceleration Module
73(38)
6.1 Introduction
73(2)
6.2 Laser Profile Characterization
75(6)
6.2.1 Wavefront Measurement
75(1)
6.2.2 Characterization with Laguerre-Gaussian Pulses
76(1)
6.2.3 Wakefield Excitation by Gaussian and Laguerre-Gaussian Pulses
77(4)
6.3 Plasma Channel Characterization
81(6)
6.3.1 Plasma Channel Formation
81(1)
6.3.2 Laser Centroid Oscillation
82(3)
6.3.3 Experimental Configuration
85(1)
6.3.4 Experimental Results and Analysis
85(2)
6.4 Wakefield Diagnostic Based on Laser Spectra
87(13)
6.4.1 Background on Wakefield Diagnostics
87(1)
6.4.2 Spectral Redshift as a Measure of Wake Excitation
88(1)
6.4.3 Experimental Configuration
89(2)
6.4.4 Simulations
91(2)
6.4.5 Analysis of Optical Spectra
93(6)
6.4.6 Summary of Spectral Analysis
99(1)
6.5 Design Consideration for Staged LPA
100(3)
6.5.1 Schemes for Multiple Laser Pulses
100(1)
6.5.2 Group Velocity Dispersion
100(1)
6.5.3 Self-Phase Modulation
101(1)
6.5.4 Pulse Splitting in Staging Experiment
101(2)
6.6 Experiment on Wake Excitation in 2nd Module
103(4)
6.6.1 Experimental Configuration
103(2)
6.6.2 Results and Analysis
105(2)
6.7 Summary and Conclusions
107(4)
7 Summary and Conclusions
111(4)
Curriculum Vitae 115(2)
References 117