Atjaunināt sīkdatņu piekrišanu

Invitation to Arithmetic Geometry [Mīkstie vāki]

  • Formāts: Paperback / softback, 397 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 28-Feb-1996
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470467259
  • ISBN-13: 9781470467258
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 101,53 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 397 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 28-Feb-1996
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470467259
  • ISBN-13: 9781470467258
Citas grāmatas par šo tēmu:
Extremely carefully written, masterfully thought out, and skillfully arranged introduction ... to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. ... an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject ... a highly welcome addition to the existing literature. --Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.
Preface xiii
Description of the chapters 1(4)
Chapter I Integral closure
5(30)
1 Introduction
5(4)
2 Integral elements
9(7)
3 Products of ideals
16(4)
4 Noetherian rings
20(8)
5 Rings of dimension 1
28(3)
6 Dedekind domains
31(4)
Chapter II Plane curves
35(50)
1 Introduction
35(3)
2 Rings of functions
38(7)
3 Points and maximal ideals
45(2)
4 Morphisms of curves
47(4)
5 Singular points
51(6)
6 Localization
57(6)
7 More on dimension
63(4)
8 Local principal ideal domains
67(4)
9 Localization of modules
71(5)
10 Hilbert's Basis Theorem
76(1)
11 More rings of functions
77(8)
Chapter III Factorization of ideals
85(46)
1 Introduction
85(3)
2 Unique factorization of ideals
88(5)
3 Ramification index and residual degree
93(5)
4 Explicit factorizations
98(3)
5 Ramified and unramified primes
101(4)
6 Simple extensions
105(3)
7 Examples
108(8)
8 Galois extensions
116(4)
9 Galois covers
120(11)
Chapter IV The discriminants
131(26)
1 Introduction
131(2)
2 The discriminant as a norm
133(5)
3 The discriminant of a basis
138(3)
4 Examples of non-simple extensions
141(2)
5 The discriminant ideal
143(6)
6 Norm map on ideals
149(8)
Chapter V The ideal class group
157(36)
1 Introduction
157(1)
2 Definition of the ideal class group
158(2)
3 Rings with finite quotients
160(3)
4 The case of number fields
163(4)
5 The case of function fields (I)
167(1)
6 Absolute values and valuations
168(4)
7 Archimedian absolute values and the product formula
172(4)
8 The case of function fields (II)
176(5)
9 Valuations and local principal ideal domains
181(2)
10 Nonsingular complete curves
183(10)
Chapter VI Projective curves
193(32)
1 Introduction
193(1)
2 Projective spaces
194(5)
3 Plane projective curves
199(4)
4 Projective transformations
203(2)
5 Conies
205(1)
6 Projections
206(3)
7 The tangent line at a point of a projective curve
209(4)
8 Functions on a projective curve
213(4)
9 Projective curves and valuaticns
217(4)
10 The intersection of two projective curves
221(4)
Chapter VII Nonsingular complete curves
225(44)
1 Introduction
225(2)
2 Nonsingular curves and Dedekind domains, revisited
227(3)
3 Fields of definition and Galois actions on curves
230(6)
4 Function fields
236(8)
5 Morphisms of nonsingular complete curves
244(8)
6 Fields of definition, revisited
252(7)
7 The divisor class group
259(10)
Chapter VIII Zeta-functions
269(36)
1 Introduction
269(5)
2 The Riemann C-function
274(2)
3 C-functions and Euler products
276(1)
4 Power series
277(2)
5 The zeta-function of a nonsingular curve
279(5)
6 The rationality of the zetarfunction
284(4)
7 The functional equation
288(4)
8 Jacobi sums
292(4)
9 Relations between class numbers
296(9)
Chapter IX The Riemann--Roch Theorem
305(34)
1 Introduction
305(3)
2 Laurent expansions
308(2)
3 Riemann's Theorem
310(6)
4 Duality
316(7)
5 Changing the ground field
323(4)
6 The genus of a nonsingular plane curve
327(2)
7 The arithmetical genus
329(2)
8 The Riemann-Hurwitz formula
331(2)
9 Maps to projective spaces
333(6)
Chapter X Frobenius morphisms and the Riemann hypothesis
339(22)
1 Inseparable extensions
339(5)
2 The Frobenius morphisms
344(4)
3 The Frobenius endomorphism
348(3)
4 The Frobenius element at a point of a Galois cover
351(3)
5 The Riemann hypothesis
354(4)
6 End of the proof
358(3)
Chapter XI Further topics
361(14)
1 Diophantine problems
361(1)
2 Surfaces
362(1)
3 The jacobian variety
363(2)
4 Galois representations
365(1)
5 The characteristic polynomial of Frobenius
366(2)
6 From Gal(Q/Q) to Gal(Fp/Fp)
368(3)
7 C-functions
371(2)
8 Extensions with given Galois groups
373(2)
Chapter XII Appendix
375(8)
1 Gauss' Lemma
375(1)
2 Field theory
376(1)
3 Infinite Galois extensions
377(3)
4 Projective limits
380(2)
5 Finite fields
382(1)
Glossary of notation 383(4)
Index 387(6)
Bibliography 393
Dino Lorenzini, University of Georgia, Athens, GA