Atjaunināt sīkdatņu piekrišanu

Invitation to Classical Analysis [Hardback]

  • Formāts: Hardback, 388 pages
  • Sērija : Pure and Applied Undergraduate Texts
  • Izdošanas datums: 01-Apr-2012
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821869329
  • ISBN-13: 9780821869321
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 93,73 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 388 pages
  • Sērija : Pure and Applied Undergraduate Texts
  • Izdošanas datums: 01-Apr-2012
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821869329
  • ISBN-13: 9780821869321
Citas grāmatas par šo tēmu:
This book gives a rigorous treatment of selected topics in classical analysis, with many applications and examples. The exposition is at the undergraduate level, building on basic principles of advanced calculus without appeal to more sophisticated techniques of complex analysis and Lebesgue integration.

Among the topics covered are Fourier series and integrals, approximation theory, Stirling's formula, the gamma function, Bernoulli numbers and polynomials, the Riemann zeta function, Tauberian theorems, elliptic integrals, ramifications of the Cantor set, and a theoretical discussion of differential equations including power series solutions at regular singular points, Bessel functions, hypergeometric functions, and Sturm comparison theory. Preliminary chapters offer rapid reviews of basic principles and further background material such as infinite products and commonly applied inequalities.

This book is designed for individual study but can also serve as a text for second-semester courses in advanced calculus. Each chapter concludes with an abundance of exercises. Historical notes discuss the evolution of mathematical ideas and their relevance to physical applications. Special features are capsule scientific biographies of the major players and a gallery of portraits.

Although this book is designed for undergraduate students, others may find it an accessible source of information on classical topics that underlie modern developments in pure and applied mathematics.
Preface xi
Chapter 1 Basic Principles 1(50)
1.1 Mathematical induction
1(1)
1.2 Real numbers
2(3)
1.3 Completeness principles
5(7)
1.4 Numerical sequences
12(6)
1.5 Infinite series
18(4)
1.6 Continuous functions and derivatives
22(5)
1.7 The Riemann integral
27(6)
1.8 Uniform convergence
33(6)
1.9 Historical remarks
39(2)
1.10 Metric spaces
41(1)
1.11 Complex numbers
42(4)
Exercises
46(5)
Chapter 2 Special Sequences 51(22)
2.1 The number e
51(4)
2.2 Irrationality of π
55(1)
2.3 Euler's constant
56(4)
2.4 Vieta's product formula
60(1)
2.5 Wallis product formula
61(2)
2.6 Stirling's formula
63(3)
Exercises
66(7)
Chapter 3 Power Series and Related Topics 73(36)
3.1 General properties of power series
73(3)
3.2 Abel's theorem
76(5)
3.3 Cauchy products and Mertens' theorem
81(2)
3.4 Taylor's formula with remainder
83(4)
3.5 Newton's binomial series
87(2)
3.6 Composition of power series
89(3)
3.7 Euler's sum
92(6)
3.8 Continuous nowhere differentiable functions
98(4)
Exercises
102(7)
Chapter 4 Inequalities 109(22)
4.1 Elementary inequalities
109(3)
4.2 Cauchy's inequality
112(5)
4.3 Arithmetic-geometric mean inequality
117(1)
4.4 Integral analogues
118(1)
4.5 Jensen's inequality
119(3)
4.6 Hilbert's inequality
122(5)
Exercises
127(4)
Chapter 5 Infinite Products 131(14)
5.1 Basic concepts
131(4)
5.2 Absolute convergence
135(1)
5.3 Logarithmic series
136(2)
5.4 Uniform convergence
138(3)
Exercises
141(4)
Chapter 6 Approximation by Polynomials 145(34)
6.1 Interpolation
145(6)
6.2 Weierstrass approximation theorem
151(2)
6.3 Landau's proof
153(4)
6.4 Bernstein polynomials
157(3)
6.5 Best approximation
160(4)
6.6 Stone-Weierstrass theorem
164(4)
6.7 Refinements of Weierstrass theorem
168(3)
Exercises
171(8)
Chapter 7 Tauberian Theorems 179(18)
7.1 Summation of divergent series
179(3)
7.2 Tauber's theorem
182(1)
7.3 Theorems of Hardy and Littlewood
183(2)
7.4 Karamata's proof
185(5)
7.5 Hardy's power series
190(3)
Exercises
193(4)
Chapter 8 Fourier Series 197(50)
8.1 Physical origins
197(2)
8.2 Orthogonality relations
199(1)
8.3 Mean-square approximation
200(3)
8.4 Convergence of Fourier series
203(4)
8.5 Examples
207(5)
8.6 Gibbs' phenomenon
212(3)
8.7 Arithmetic means of partial sums
215(4)
8.8 Continuous functions with divergent Fourier series
219(2)
8.9 Fourier transforms
221(7)
8.10 Inversion of Fourier transforms
228(4)
8.11 Poisson summation formula
232(4)
Exercises
236(11)
Chapter 9 The Gamma Function 247(22)
9.1 Probability integral
247(2)
9.2 Gamma function
249(2)
9.3 Beta function
251(1)
9.4 Legendre's duplication formula
252(1)
9.5 Euler's reflection formula
253(2)
9.6 Infinite product representation
255(2)
9.7 Generalization of Stirling's formula
257(1)
9.8 Bohr-Mollerup theorem
257(4)
9.9 A special integral
261(1)
Exercises
262(7)
Chapter 10 Two Topics in Number Theory 269(22)
10.1 Equidistributed sequences
269(2)
10.2 Weyl's criterion
271(5)
10.3 The Riemann zeta function
276(4)
10.4 Connection with the gamma function
280(2)
10.5 Functional equation
282(4)
Exercises
286(5)
Chapter 11 Bernoulli Numbers 291(18)
11.1 Calculation of Bernoulli numbers
291(3)
11.2 Sums of positive powers
294(1)
11.3 Euler's sums
295(2)
11.4 Bernoulli polynomials
297(3)
11.5 Euler-Maclaurin summation formula
300(2)
11.6 Applications of Euler-Maclaurin formula
302(3)
Exercises
305(4)
Chapter 12 The Cantor Set 309(18)
12.1 Cardinal numbers
309(4)
12.2 Lebesgue measure
313(2)
12.3 The Cantor set
315(2)
12.4 The Cantor-Scheeffer function
317(3)
12.5 Space-filling curves
320(3)
Exercises
323(4)
Chapter 13 Differential Equations 327(42)
13.1 Existence and uniqueness of solutions
327(6)
13.2 Wronskians
333(3)
13.3 Power series solutions
336(7)
13.4 Bessel functions
343(5)
13.5 Hypergeometric functions
348(6)
13.6 Oscillation and comparison theorems
354(4)
13.7 Refinements of Sturm's theory
358(2)
Exercises
360(9)
Chapter 14 Elliptic Integrals 369(18)
14.1 Standard forms
369(2)
14.2 Fagnano's duplication formula
371(2)
14.3 The arithmetic-geometric mean
373(8)
14.4 The Legendre relation
381(3)
Exercises
384(3)
Index of Names 387(2)
Subject Index 389