Atjaunināt sīkdatņu piekrišanu

E-grāmata: Invitation to Mathematical Logic

  • Formāts: EPUB+DRM
  • Sērija : Graduate Texts in Mathematics 301
  • Izdošanas datums: 06-May-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031553684
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 71,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Graduate Texts in Mathematics 301
  • Izdošanas datums: 06-May-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031553684
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In addition to covering the essentials, the author’s intention in writing this text is to entice the reader to further study mathematical logic.  There is no current “standard text” for a first graduate course in mathematical logic and this book will fill that gap.  While there is more material than could be covered in a traditional one semester course, an instructor can cover the basics and still have the flexibility to choose several weeks’ worth of interesting advanced topics that have been introduced. The text can and will be used by people in various courses with different sorts of perspectives.  This versatility is one of the many appealing aspects of this book. A list of suggested portions to be covered in a single course is provided as well as a useful chart which maps chapter dependencies. Additionally, a motivated student will have ample material for further reading.

New definitions, formalism, and syntax have been streamlined to engage thereader quickly into the heart of logic and to more sophisticated topics. Part I and Part IV center on foundational questions, while Part III establishes the fundamentals of computability. Part II develops model theory, highlighting the model theory of the fields of real and complex numbers. The interplay between logic and other areas of mathematics, notably algebra, number theory, and combinatorics, are illustrated in Chapters 5, 6, 8, 14, and 16.  For most of the text, the only prerequisite is mathematical maturity. The material should be accessible to first year graduate students or advanced undergraduates in mathematics, graduate students in philosophy with a solid math background, or students in computer science who want a mathematical introduction to logic. Prior exposure to logic is helpful but not assumed.

Introduction.- I. Truth and Proof.- 1 Languages, Structures and
Theories.- 2 Embeddings and Substructures.- 3 Formal Proofs.- 4 Gödel's
Completeness Theorem.- II. Elements of Model Theory.- 5 Compactness and
Complete Theories.- 6 Ultraproducts.- 7 Quantifier Elimination.- 8 Model
Theory of the Real Field.- III. Computability.- 9 Models of Computation.- 10
Universal Machines and Undecidability.- 11 Computably Enumerable and
Arithmetic Sets.- 12 Turing Reducibility.-  IV. Arithmetic and
Incompleteness.-13 Gödel's Incompleteness Theorems.- 14 Hilberts 10th
Problem.- 15 Peano Arithmetic and 0.- 16 Models of Arithmetic and
Independence Results. - Appendices.- A Set Theory. - B Unique Readability.
- C Real Algebra. -Bibliography. - Index.
David Marker is Professor Emeritus of Mathematics at the University of Illinois at Chicago where he was Liberal Arts & Sciences Distinguished Professor and a Fellow of the American Mathematical Society. His research interests lie in model theory and its applications. His textbook, Model Theory: An Introduction, which appeared as GTM 217 in 2002, was awarded the Association of Symbolic Logic Shoenfield Prize for expository writing.