Atjaunināt sīkdatņu piekrišanu

Iron-Based Superconductivity 2015 ed. [Hardback]

Edited by , Edited by , Edited by
  • Formāts: Hardback, 447 pages, height x width: 235x155 mm, weight: 8999 g, 202 Illustrations, color; 17 Illustrations, black and white; XIV, 447 p. 219 illus., 202 illus. in color., 1 Hardback
  • Sērija : Springer Series in Materials Science 211
  • Izdošanas datums: 19-Jan-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319112538
  • ISBN-13: 9783319112534
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 447 pages, height x width: 235x155 mm, weight: 8999 g, 202 Illustrations, color; 17 Illustrations, black and white; XIV, 447 p. 219 illus., 202 illus. in color., 1 Hardback
  • Sērija : Springer Series in Materials Science 211
  • Izdošanas datums: 19-Jan-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319112538
  • ISBN-13: 9783319112534
This volume presents an in-depth review of experimental and theoretical studies on the newly discovered Fe-based superconductors. Following the Introduction, which places iron-based superconductors in the context of other unconventional superconductors, the book is divided into three sections covering sample growth, experimental characterization, and theoretical understanding. To understand the complex structure-property relationships of these materials, results from a wide range of experimental techniques and theoretical approaches are described that probe the electronic and magnetic properties and offer insight into either itinerant or localized electronic states. The extensive reference lists provide a bridge to further reading. Iron-Based Superconductivity is essential reading for advanced undergraduate and graduate students as well as researchers active in the fields of condensed matter physics and materials science in general, particularly those with an interest in correla

ted metals, frustrated spin systems, superconductivity, and competing orders.

Part I Materials: Synthesis, structural properties, and phase diagrams.- Bulk.- Film.- Part II Experiments: Characterization of Electronic and Magnetic Properties.- Electron spectroscopy ARPES.- Magnetic order and dynamics neutron scattering.- Scanning Tunneling Spectroscopy.- X-ray scattering and diffraction.- Optics and transport.- Other techniques.- Properties under extreme conditions.- Part III Theories.- First-principles band calculation.- Many-body computation.- Itinerant electron model.- t-J-like model with localized moments.- Coexisting itinerant and localized electrons.- Orbital-selective Mott transition.
Part I Materials
1 Introduction: Discovery and Current Status
3(18)
Hideo Hosono
1.1 A Tale of the Discovery
3(5)
1.1.1 Background Research
3(2)
1.1.2 Electromagnetic Properties of LaTMPnO
5(2)
1.1.3 Emergence of Tc in LaFeAsO
7(1)
1.1.4 What Happens Around 150 K in LaFeAsO?
7(1)
1.2 A Brief History of Fe(Ni)-Based Superconductors at Early Stage
8(2)
1.3 Features of Fe-Based High Tc Superconductors
10(2)
1.4 Recent Progress
12(4)
1.4.1 Discovery of Double Dome Structure in Tc
12(3)
1.4.2 Toward Application
15(1)
1.5 Prospective
16(1)
References
17(4)
2 Synthesis, Structure, and Phase Diagram of Iron-Based Superconductors: Bulk
21(52)
X.G. Luo
T. Wu
X.H. Chen
2.1 Crystal Structure
22(19)
2.1.1 FeSe Superconductors
22(1)
2.1.2 Anti-PbFC1-Type Structure
23(1)
2.1.3 ThCr2Si2 Structure
24(3)
2.1.4 ZrCuSiAs-Type Structure
27(6)
2.1.5 Superconductors with Perovskite-Type Blocking Layers
33(2)
2.1.6 Superconductors with Skutterudite Intermediary Layers
35(2)
2.1.7 Relationship Between Structure and Superconductivity
37(1)
2.1.8 Titanium Oxypnictides
38(2)
2.1.9 Composite Superconductor of Iron-Pnictide and Titanium Oxypnictide
40(1)
2.2 Synthesis Method
41(7)
2.2.1 Preparation for Polycrystalline Samples
43(3)
2.2.2 Growth of Single Crystals
46(2)
2.3 Phase Diagram
48(17)
2.3.1 Overview
48(3)
2.3.2 "1111" Materials
51(5)
2.3.3 "122" Materials
56(5)
2.3.4 "111" Materials
61(2)
2.3.5 "11" Materials
63(2)
References
65(8)
3 Synthesis, Structure, and Phase Diagram: Film and STM
73(42)
Xucun Ma
Xi Chen
Qi-Kun Xue
3.1 Introduction
73(1)
3.2 FeSe Thin Films
74(22)
3.2.1 FeSe Films Grown on Graphene
74(4)
3.2.2 Defect Effects on Superconductivity of FeSe Films
78(7)
3.2.3 Thickness-Dependent Superconductivity of FeSe Films Grown on Graphene
85(1)
3.2.4 Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor
86(6)
3.2.5 Interfacial Superconductivity of FeSe Films Grown on STO
92(4)
3.3 KxFe2-ySe2-z, Thin Films
96(12)
3.3.1 KxFe2-ySe2 Films on Graphene: Growth, Phase Separation, and Magnetic Order
97(6)
3.3.2 KxFe2-ySe2-z Films on STO: Growth and Phase Diagram
103(5)
3.4 Brief Summary
108(1)
References
108(7)
Part II Characterization
4 Electron Spectroscopy: ARPES
115(36)
Y. Zhang
Z.R. Ye
D.L. Feng
4.1 Introduction
115(3)
4.1.1 Angle-Resolved Photoemission Spectroscopy
115(1)
4.1.2 kz Measurement in ARPES
116(1)
4.1.3 Polarization Dependence and Orbital-Sensitive Probe
117(1)
4.2 Electronic Structure of Iron-Based Superconductors
118(6)
4.2.1 The Undoped Compounds
118(2)
4.2.2 The Effect of Carrier Doping
120(2)
4.2.3 The Effect of Chemical Pressure
122(2)
4.3 Broken Symmetry Phases
124(6)
4.3.1 Magnetic and Structural Transitions
124(2)
4.3.2 The Coexistence of SDW and Superconductivity
126(3)
4.3.3 Strongly Correlated Electronic Structure in Fe1+y Te
129(1)
4.4 The Superconducting Gap and Pairing Symmetry
130(5)
4.4.1 In-Plane Gap Distributions
131(1)
4.4.2 Gap Distribution Along kz
132(1)
4.4.3 Gap Nodes
132(3)
4.5 Heavily Electron Doped Iron-Chalcogenide
135(9)
4.5.1 Phase Separation in KxFe2-ySe2
135(4)
4.5.2 Superconducting Gap in KxFe2-ySe2
139(1)
4.5.3 Superconductivity in FeSe Thin Film
140(4)
4.6 Summary
144(2)
References
146(5)
5 Magnetic Order and Dynamics: Neutron Scattering
151(36)
Pengcheng Dai
Huiqian Luo
Meng Wang
5.1 Introduction
151(2)
5.2 Static Antiferromagnetic Order
153(5)
5.3 Spin Waves in Parent Compounds
158(7)
5.4 Spin Excitations in Doped Compounds
165(8)
5.5 Neutron Polarization Analysis of Spin Excitations
173(5)
5.6 Summary
178(1)
References
178(9)
6 Optical and Transport Properties
187(36)
Christopher C. Homes
6.1 Introduction
187(5)
6.1.1 Metals
189(2)
6.1.2 Superconductors
191(1)
6.2 Iron-Based Superconductors
192(21)
6.2.1 LaFeAsO1-xF, and Related Materials
193(2)
6.2.2 BaFe2As2 and Related Materials
195(12)
6.2.3 Fe1+δTe and FeTe1-x Sex
207(3)
6.2.4 Kx Fe2-y Se2
210(3)
6.3 Summary
213(1)
Appendix
214(1)
References
215(8)
Part III Theory
7 First-Principles Studies in Fe-Based Superconductors
223(32)
Wei Ku
Tom Berlijn
Limin Wang
Chi-Cheng Lee
7.1 Introduction
223(4)
7.1.1 Normal State Electronic Structure
224(3)
7.2 Translational Symmetry: One-Fe-Atom Versus Two-Fe-Atom Perspective
227(6)
7.2.1 Change of Representation
227(2)
7.2.2 Important Physical Effects Revealed in One-Fe-Atom Representation
229(3)
7.2.3 Implication to Nodal Structures of Superconductivity Order Parameter
232(1)
7.3 Antiferromagnetic and Ferro-Orbital Correlations
233(3)
7.3.1 Anisotropy and Ferro-Orbital Order
233(2)
7.3.2 Consequence of Ferro-Orbital Order
235(1)
7.4 First Principles Simulations of Disordered Dopants in Fe-Based Superconductors
236(14)
7.4.1 Can Transition Metals Substitutions Dope Carriers in BaFe2As2?
236(4)
7.4.2 Effective Electron Doping by Fe Vacancies in Ax Fe2-y Se2
240(3)
7.4.3 Can Se Vacancies Electron Dope Monolayer FeSe?
243(5)
7.4.4 Effects of Disordered Ru Substitution in BaFe2As2: Possible Realization of Superdiffusion in Real Materials
248(2)
References
250(5)
8 Itinerant Electron Scenario
255(76)
Andrey Chubukov
8.1 Introduction
255(7)
8.2 The Electronic Structure of FeSCs
262(2)
8.3 The Low-Energy Model and the Interplay Between Magnetism and Superconductivity
264(12)
8.3.1 Ladder Approximation
267(3)
8.3.2 Beyond Ladder Approximation
270(6)
8.4 Interplay Between SDW Magnetism and Superconductivity, Parquet RG Approach
276(7)
8.4.1 Parquet Renormalization Group: The Basics
277(2)
8.4.2 pRG in a 2-Pocket Model
279(4)
8.5 Competition Between Density Wave Orders and Superconductivity
283(7)
8.5.1 Two Pocket Model
284(6)
8.5.2 Summary of the pRG Approach
290(1)
8.6 SDW Magnetism and Nematic Order
290(7)
8.6.1 Selection of SDW Order
291(3)
8.6.2 Pre-emptive Spin-Nematic Order
294(2)
8.6.3 Consequences of the Ising-Nematic Order
296(1)
8.7 The Structure of the Superconducting Gap
297(18)
8.7.1 The Structure of s-Wave and d-Wave Gaps in a Multi-Band SC: General Reasoning
297(6)
8.7.2 How to Extract Uij(k, p) from the Orbital Model?
303(2)
8.7.3 Doping Dependence of the Couplings, Examples
305(6)
8.7.4 LiFeAs
311(2)
8.7.5 Superconductivity Which Breaks Time-Reversal Symmetry
313(2)
8.8 Experimental Situation on Superconductivity
315(7)
8.8.1 Moderate Doping, Gap Symmetry
315(1)
8.8.2 Moderate Doping, s± vs s++
316(1)
8.8.3 Moderate Doping, Nodal vs No Nodal s± Gap
317(2)
8.8.4 Strongly Doped FeSCs
319(2)
8.8.5 Summary
321(1)
References
322(9)
9 Orbital+Spin Multimode Fluctuation Theory in Iron-based Superconductors
331(46)
Seiichiro Onari
Hiroshi Kontani
9.1 Introduction
331(3)
9.2 Orbital Fluctuation Theory
334(10)
9.2.1 Quadrupole Interaction in the RPA
334(1)
9.2.2 Self-consistent VC Method
335(5)
9.2.3 SC-VCΣ Method
340(1)
9.2.4 Kugel-Khomskii Model
341(1)
9.2.5 Superconductivity in SC-VCΣ Method
342(2)
9.3 Structural Transition and Softening of C66
344(5)
9.3.1 Two Kinds of Structural Transitions Induced by the AL-VC
344(1)
9.3.2 Softening of C66, Enhancement of Raman Quadrupole Susceptibility Taman
345(4)
9.4 Comparison with the 2D Renormalization Group Theory
349(1)
9.5 Evidence of S++-Wave State in Iron-Based Superconductors
350(20)
9.5.1 Nonmagnetic Impurity Effect
351(2)
9.5.2 Impurity Induced Nematic State
353(3)
9.5.3 Neutron Scattering Spectrum
356(4)
9.5.4 Gap Functions in BaFe2(As,P)2
360(4)
9.5.5 Superconducting Gap Function in LiFeAs
364(6)
9.6 Summary
370(1)
Appendix
371(2)
References
373(4)
10 Coexisting Itinerant and Localized Electrons
377(32)
Yi-Zhuang You
Zheng-Yu Weng
10.1 Introduction
377(12)
10.1.1 Basic Experimental Evidence
378(3)
10.1.2 Theories for Iron-Based Superconductors
381(8)
10.2 Two-Fluid Description for Iron-Based Superconductors
389(10)
10.2.1 Two-Fluid Description Based on the Hybrid Model
389(2)
10.2.2 Low Energy Collective Modes
391(1)
10.2.3 Mean-Field Phase Diagram
392(2)
10.2.4 Spin Dynamics
394(3)
10.2.5 Charge Dynamics
397(2)
10.3 Summary
399(2)
References
401(8)
11 Weak and Strong Correlations in Fe Superconductors
409(569)
Luca de' Medici
11.1 Introduction: Electronic Correlations?
409(5)
11.2 Essentials of the Electronic Structure of Fe-Based Pnictides and Chalcogenides
414(3)
11.3 Overall Correlation Strength: The "Janus" Effect of Hund's Coupling
417(7)
11.4 Orbital-Selective Mott Physics: Experimental and Ab Initio Evidences
424(3)
11.5 Orbital Decoupling, the Mechanism of Selective Mottness
427(4)
11.6 Back to Realism: FeSC and Two "Wrong" (Yet Instructive) Calculations
431(5)
Appendix: The Slope of the Linear Zα(nα) in the Orbital Decoupling Regime
436(2)
References
438(540)
Index 443 978