Atjaunināt sīkdatņu piekrišanu

E-grāmata: Irrigation Engineering: Principles, Processes, Procedures, Design, and Management

(Texas A & M University), (Texas A & M University)
  • Formāts: PDF+DRM
  • Izdošanas datums: 07-Jul-2022
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781009059367
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 07-Jul-2022
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781009059367
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"This textbook provides a comprehensive treatment of irrigation engineering for advanced undergraduates and graduate students. It does not require a background in calculus, hydrology, or hydraulics, offering a one-stop overview of the entire field of study. It includes everything a student of irrigation engineering needs to know: concepts of climate, soils, crops, water quality, hydrology, and hydraulics, as well as their application to design and environmental management. To demonstrate the practical applications of the theories discussed, there are over 300 worked examples and end-of chapter exercises. The exercises allow readers to solve real-world problems and apply the information they've learned to a diverse range of scenarios. To further prepare students for their future careers, each chapter includes many illustrative diagrams and tables containing data to help design irrigation systems. For instructors' use when planning and teaching, a solutions manual can be found online alongside a suite of PowerPoint lecture slides"--

Recenzijas

'Irrigation Engineering by Singh and Su does a great job in covering the wide array of topics that are needed in the field in a way that is both accessible and rigorous. Inclusion of key reference tables and charts as well as worked examples are useful for both learning concepts and implementing designs.' Stephen P. Good, Oregon State University 'This book is a comprehensive treatise on irrigation engineering! It covers a wide range of fundamental topics related to soil-plant-water relations as applied to irrigation With more than 500 problems peppered throughout the book - half of them meticulously solved - this is a rare treat I highly recommend this book to students, teachers, scientists, and engineers in academia and consulting.' R. Karthikeyan, Clemson University ' noteworthy for the clarity and depth with which the authors deal with such a transversal subject an excellent book for students and scholars in agricultural engineering that have to study independently, or want full support to prepare for university and professional licensing exams.' Giorgio Baiamonte, Universitą di Palermo ' an invaluable book for understanding the design and operation of modern irrigation systems The book gives engineers and scientists access to an extensive range of key subjects covering crops, soils, land, water, and irrigation methods together with the core theory of irrigation design and water management. Topics are placed in a wider perspective, including issues of global food supply, water resources management and environmental sustainability - making the book effectively a modern day Encyclopaedia of Irrigation.' Derek Clarke, University of Southampton 'A significant contribution to the field of irrigation engineering. This book is full of important information for anyone considering water resources engineering, particularly agricultural irrigation. It introduces a wide range of irrigation techniques practical for academia and water professionals. Very comprehensive and easy to read.' Hossein Hashemi, Lund University

Papildus informācija

Covering climate, soils, crops, water quality, hydrology, and hydraulics, this textbook offers a perfect overview of irrigation engineering.
Preface xxiii
Acknowledgments xxvi
Part I Fundamentals
1(118)
1 Introduction
3(15)
1.1 Preliminary Remarks
3(1)
1.2 Organization of Contents
4(1)
1.3 Definition of Irrigation
5(1)
1.4 Benefits of Irrigation
5(1)
1.5 Limitations of Irrigation
6(1)
1.6 Need for Irrigation
6(1)
1.7 Planning for an Irrigation System
7(1)
1.8 Food Security
7(3)
1.8.1 Population and Growth Pattern
7(1)
1.8.2 Food Requirement
8(2)
1.8.3 Rising Living Standards
10(1)
1.8.4 Nutritional Security
10(1)
1.9 Development of Irrigation Worldwide
10(3)
1.10 Irrigation in the United States
13(1)
1.11 Irrigation Practice in the United States
13(1)
1.12 Impact of Global Warming and Climate Change
14(1)
1.13 Environmental Concerns
15(1)
1.14 Future of Irrigation
16(1)
Questions
16(2)
2 Climate
18(26)
2.1 Introduction
19(1)
2.2 Variation of Climate
19(1)
2.3 Classification of Climates
20(5)
2.3.1 Koppen-Geiger Classification
20(1)
2.3.2 Types of Climate
21(3)
2.3.3 Holdridge Life Zones System
24(1)
2.3.4 Climates in the United States
24(1)
2.4 Earth System
25(1)
2.5 Sun
26(1)
2.6 Seasons
26(1)
2.7 Meteorological Variables
26(16)
2.7.1 Temperature
26(2)
2.7.2 Dew-Point Temperature
28(1)
2.7.3 Wet-Bulb Temperature
28(1)
2.7.4 Atmospheric Pressure
28(1)
2.7.5 Atmospheric Water Vapor and Its Indices
29(2)
2.7.6 Atmospheric Humidity
31(2)
2.7.7 Air Density
33(3)
2.7.8 Wind
36(1)
2.7.9 Clouds and Sunshine Hours
36(1)
2.7.10 Radiation
36(6)
2.8 The Greenhouse Effect
42(1)
Questions
43(1)
3 Sources and Availability of Water
44(12)
3.1 Introduction
44(1)
3.2 Surface Water
44(1)
3.3 Groundwater
45(2)
3.4 Wastewater Sources
47(1)
3.5 Water Rights
47(1)
3.6 Rainwater Harvesting
48(1)
3.7 Wastewater and Recycling
48(1)
3.8 Location of Water Source
48(1)
3.9 Height of Water for Pumping
48(1)
3.10 Availability of Water
49(4)
3.10.1 Flow of Water in a Stream
49(1)
3.10.2 Water in a Lake, Pond, or Reservoir
50(1)
3.10.3 Minimum Expected Supply Rate
51(2)
3.11 Flow of Water from a Well
53(1)
3.12 Combination of Sources
53(1)
Questions
54(2)
4 Groundwater and Wells
56(25)
4.1 Introduction
57(1)
4.2 Definitions and Notations
57(5)
4.2.1 Aquifers
57(1)
4.2.2 Porosity
57(1)
4.2.3 Void Ratio
58(1)
4.2.4 Permeability and Hydraulic Conductivity
59(1)
4.2.5 Anisotropy and Heterogeneity
59(1)
4.2.6 Transmissivity
59(1)
4.2.7 Specific Yield
59(1)
4.2.8 Specific Retention
60(1)
4.2.9 Specific Storage
61(1)
4.2.10 Storativity
61(1)
4.2.11 Hydraulic Diffusivity
62(1)
4.3 Darcy's Law
62(1)
4.4 Steady-State Well Hydraulics
63(2)
4.4.1 Confined Aquifers
63(1)
4.4.2 Unconfined Aquifers
64(1)
4.4.3 Well Fields
65(1)
4.5 Unsteady Well Hydraulics
65(7)
4.5.1 Determination of Aquifer Parameters by Pumping Test
68(2)
4.5.2 Recovery of a Well
70(2)
4.6 Well Construction
72(4)
4.6.1 Drilling
72(1)
4.6.2 Well Installations
72(1)
4.6.3 Screen Selection
72(4)
4.6.4 Well Development
76(1)
4.7 Well Testing
76(1)
Questions
77(1)
Appendix: Supplementary Information
78(3)
5 Irrigation Water Quality
81(13)
5.1 Introduction
81(1)
5.2 Water Quality Characteristics
81(1)
5.3 The Effect of Poor Water Quality
82(1)
5.4 Salinity
83(1)
5.5 Effect of Salinity on Soil Water
83(1)
5.6 Sodicity
84(1)
5.7 Effect of Sodicity
85(1)
5.8 Classification of Salt-Affected Soils
85(1)
5.9 Suspended Matter
86(1)
5.10 Effect of Toxic Elements
86(1)
5.11 Trace Elements
86(1)
5.12 Heavy Metals
87(1)
5.13 Hardness
87(1)
5.14 Effect of Chemical Concentrations
88(1)
5.15 Corrosion
89(1)
5.16 Classification of Irrigation Water
89(1)
5.17 Effect of Water Quality
89(1)
5.18 Water Quality Guidelines
89(1)
5.19 Managing with Poor-Quality Water
89(3)
Questions
92(2)
6 Soils and Soil Management
94(16)
6.1 Introduction
94(1)
6.2 Development of Soil
94(1)
6.2.1 Disintegration of Rocks
94(1)
6.2.2 Chemical Processes and Minerals
94(1)
6.2.3 Formation of Soil
95(1)
6.3 Soil Characterization and Profile
95(1)
6.4 Types of Soil
96(2)
6.4.1 Soil Texture
96(1)
6.4.2 Soil Structure
97(1)
6.5 Spatial Distribution of Soils
98(1)
6.6 Classification and Evaluation of Soils
99(2)
6.7 Soil Grading
101(1)
6.8 Soil Physical Characteristics
101(2)
6.8.1 Density
101(1)
6.8.2 Soil Porosity
102(1)
6.8.3 Air-Filled Porosity
102(1)
6.9 Soil Salinity
103(1)
6.10 Soil Degradation
104(1)
6.11 Soil Conservation
104(1)
6.12 Salinity Management
104(4)
6.12.1 Leaching
104(2)
6.12.2 Subsurface Drainage
106(1)
6.12.3 Seed Placement
106(2)
6.12.4 Frequent Irrigation
108(1)
6.12.5 Pre-planting Irrigation
108(1)
6.12.6 Change in Irrigation Method
108(1)
6.12.7 Use of Chemicals
108(1)
6.12.8 Water Delivery by Pipelines
108(1)
6.13 Effect of Climate
108(1)
Questions
108(2)
7 Crops and Crop Production
110(9)
7.1 Introduction
110(1)
7.2 Classification of Crops
110(2)
7.3 Cropping Systems
112(1)
7.4 Factors Affecting Crop Production
113(5)
7.4.1 Climatic Factors
113(1)
7.4.2 Soil Fertility and Fertilizers
113(1)
7.4.3 Water Availability
114(3)
7.4.4 Soil Aeration and Drainage
117(1)
7.4.5 Plant Density, Spacing, and Leaf Area Index
117(1)
7.4.6 Crop Variety
117(1)
Questions
118(1)
Part II Principles of Hydraulics
119(94)
8 Channel Design
121(24)
8.1 Introduction
121(1)
8.2 Geometric Elements
122(1)
8.3 Flow Characteristics
122(7)
8.3.1 Types of Flow
123(1)
8.3.2 State of Flow
123(1)
8.3.3 Velocity Distribution in Flow Cross-Section
123(2)
8.3.4 Mass Balance
125(1)
8.3.5 Energy Balance
125(1)
8.3.6 Momentum Balance
125(1)
8.3.7 Critical Flow
126(2)
8.3.8 Uniform Flow
128(1)
8.4 Design of Channels
129(8)
8.4.1 Design of Rigid Boundary Channels
129(4)
8.4.2 Design of Loose Boundary Channels
133(4)
8.5 Gradually Varied Flow
137(5)
8.5.1 Governing Equation
137(1)
8.5.2 Water Surface Profiles
138(2)
8.5.3 Computation of Flow Profile
140(2)
Questions
142(1)
Appendix: Supplementary Information
142(3)
9 Pipeline Hydraulics
145(27)
9.1 Introduction
145(1)
9.2 Energy Equation
145(5)
9.3 Energy Loss Equations
150(10)
9.3.1 Head Loss in Pipes
150(10)
9.3.2 Head Loss Due to Other Pipe Characteristics
160(1)
9.4 Head Loss in Pipelines
160(6)
9.4.1 Single Pipeline with a Pump
163(1)
9.4.2 Pipes in Series
164(1)
9.4.3 Pipes in Parallel
165(1)
9.5 Pipelines
166(4)
9.5.1 Pressure Rating and Hydrostatic Design Stress
167(1)
9.5.2 Underground Pipelines
167(1)
9.5.3 Types of Irrigation Pipeline Systems
167(1)
9.5.4 Low-Head Pipelines
167(1)
9.5.5 Underground Pipeline Components
168(1)
9.5.6 Pressure Variation
169(1)
9.5.7 Design of Buried Pipelines
169(1)
9.5.8 Laying Out of Pipelines
170(1)
Questions
170(2)
10 Pumps and Pump Selection
172(23)
10.1 Introduction
172(1)
10.2 Classification of Pumps
173(1)
10.3 Centrifugal Pumps
173(1)
10.3.1 Classification of Centrifugal Pumps Based on the Axis of Rotation
174(1)
10.3.2 Classification of Centrifugal Pumps Based on Number of Impellers
174(1)
10.3.3 Classification of Centrifugal Pumps Based on Suction
174(1)
10.3.4 Classification of Centrifugal Pumps Based on Working Head
174(1)
10.3.5 Classification of Centrifugal Pumps Based on Method of Drive
174(1)
10.4 The Main Components
174(2)
10.4.1 Casing
174(1)
10.4.2 Impellers and Their Classification
175(1)
10.5 Pump Performance
176(4)
10.5.1 Capacity
176(1)
10.5.2 Head
176(1)
10.5.3 Power
177(1)
10.5.4 Efficiency
178(1)
10.5.5 Net Positive Suction Head
178(2)
10.5.6 Specific Speed
180(1)
10.6 Performance Characteristic Curves
180(2)
10.7 Affinity Laws
182(1)
10.8 Performance Curves for Pumps in Series
183(1)
10.9 Characteristics of Pumps in Parallel
184(1)
10.10 Deep-Well Turbine Pump
185(2)
10.10.1 Components of Deep-Well Turbine Pumps
186(1)
10.10.2 Operating Characteristics
186(1)
10.11 Submersible Pumps
187(1)
10.12 Pump Operating Point
187(2)
10.13 Pump Selection
189(4)
10.13.1 Performance Requirements
190(1)
10.13.2 Pump Type
190(1)
10.13.3 Economic Evaluation
191(2)
Questions
193(2)
11 Flow Measurement
195(18)
11.1 Introduction
195(1)
11.2 Flow Volume and Flow Rate
195(1)
11.3 Flow Measurement in Open Channels
196(9)
11.3.1 Volumetric Method
196(1)
11.3.2 Velocity-Area Method
197(2)
11.3.3 Weirs
199(1)
11.3.4 Flumes
200(5)
11.4 Orifices
205(3)
11.4.1 Freely Flowing Orifice
206(1)
11.4.2 Fully Submerged Orifices
206(1)
11.4.3 Partially Submerged Orifices
207(1)
11.5 Row Measurement in Pipes
208(2)
11.5.1 Venturimeter
208(1)
11.5.2 Pitot Tube
209(1)
11.5.3 Orifice Plate
209(1)
Questions
210(3)
Part III Principles of Hydrology
213(52)
12 Infiltration
215(13)
12.1 Introduction
215(1)
12.2 Symbols and Definitions
215(2)
12.3 Factors Affecting Infiltration
217(1)
12.4 Measurement of Infiltration
217(1)
12.5 Determination of Infiltration
218(1)
12.5.1 Mass Conservation
218(1)
12.5.2 Flux Law
219(1)
12.6 Infiltration Equations
219(6)
12.6.1 Kostiakov Equation
219(3)
12.6.2 Soil Conservation Service Equation
222(2)
12.6.3 Philip Equation
224(1)
12.6.4 Horton Equation
225(1)
12.6.5 Green--Ampt Equation
225(1)
Questions
225(3)
13 Soil Water
228(20)
13.1 Introduction
228(1)
13.2 Soil Water in Gaseous Phase
229(1)
13.3 Soil Wetness
229(1)
13.4 Types of Soil Water
229(1)
13.5 Soil Moisture and Field Capacity
230(1)
13.6 Wilting Point
231(1)
13.7 Available Water
231(1)
13.8 Soil Water Retention
231(1)
13.9 Soil Water Properties
232(3)
13.10 Soil Water Physics
235(7)
13.10.1 Cohesion and Adhesion
236(1)
13.10.2 Surface Tension
236(1)
13.10.3 Capillarity
236(1)
13.10.4 Forces on Soil Water
237(1)
13.10.5 Soil Water Storage and Movement
237(1)
13.10.6 Soil Water Energy
237(1)
13.10.7 Soil Water Potential
238(1)
13.10.8 Soil Water Characteristic Curve
239(2)
13.10.9 Hysteresis
241(1)
13.11 Soil Water Flow
242(2)
13.11.1 Entry of Water into Soil
242(1)
13.11.2 Water Movement within the Soil
242(1)
13.11.3 Condition for Soil Water Movement
243(1)
13.11.4 Effect of Soil Air
243(1)
13.11.5 Zones of Water Movement
243(1)
13.11.6 Barrier to Flow
243(1)
13.11.7 Resistance to Soil Water Movement
243(1)
13.12 Soil Water Dynamics
244(1)
Questions
245(3)
14 Evapotranspiration
248(17)
14.1 Introduction
249(1)
14.2 Extraction of Water by Plants
250(1)
14.3 Root System
250(1)
14.4 Soil Water Extraction by Roots
250(1)
14.5 Energy Balance
251(1)
14.6 Methods for Computing Evapotranspiration
251(5)
14.6.1 Blaney--Criddle (BC) Method
251(1)
14.6.2 Jensen--Haise (JH) Method
252(1)
14.6.3 Hargreaves Method
253(1)
14.6.4 Penman Method
254(1)
14.6.5 Wright's Modification
254(1)
14.6.6 FAO Modification
254(1)
14.6.7 Priestley--Taylor Method Modification
255(1)
14.6.8 Penman--Monteith Method
255(1)
14.7 Computation of Input Parameters
256(6)
14.8 Transpiration
262(1)
Questions
263(2)
Part IV Irrigation Science
265(56)
15 Crop Water Use
267(19)
15.1 Introduction
267(1)
15.2 Crop Water Use and Coefficient
268(1)
15.3 FAO Crop Coefficient Method
268(7)
15.4 Wright Coefficient Method
275(2)
15.5 Division of Crop Coefficient
277(3)
15.6 Water Stress Effect (Ks)
280(1)
15.7 Wet Soil Evaporation Factor (Kw)
281(2)
Questions
283(3)
16 Irrigation Efficiency
286(13)
16.1 Introduction
286(1)
16.2 Factors Affecting Irrigation Efficiency
287(1)
16.3 Irrigation Efficiencies
287(10)
16.3.1 Reservoir Storage Efficiency
287(1)
16.3.2 Water Conveyance Efficiency
288(1)
16.3.3 Water Application Efficiency
288(1)
16.3.4 Water Use Efficiency
289(1)
16.3.5 Overall System Efficiency
289(1)
16.3.6 Soil Water Storage Efficiency
289(1)
16.3.7 Deep Percolation Ratio
290(1)
16.3.8 Tailwater Ratio
290(1)
16.3.9 Irrigation Uniformity
290(2)
16.3.10 Adequacy of Irrigation
292(2)
16.3.11 Effectiveness of Irrigation
294(1)
16.3.12 Application Efficiency of Low Quarter
295(2)
Questions
297(2)
17 Surface Irrigation Preliminaries
299(22)
17.1 Introduction
299(1)
17.2 Physical System
300(1)
17.2.1 Water Supply Subsystem
300(1)
17.2.2 Water Delivery Subsystem
300(1)
17.2.3 Water Use Subsystem
300(1)
17.2.4 Water Removal and Reuse Subsystem
301(1)
17.3 Irrigation Methods
301(1)
17.4 Surface Irrigation Methods
302(1)
17.4.1 Level Systems
302(1)
17.4.2 Graded Systems
302(1)
17.5 Choice of an Irrigation Method
303(2)
17.5.1 Natural Factors
303(1)
17.5.2 Crop Type
304(1)
17.5.3 Type of Technology
304(1)
17.5.4 Irrigation Practice
304(1)
17.5.5 Labor
304(1)
17.5.6 Cost and Benefit
304(1)
17.5.7 Selection of a Surface Irrigation Method
304(1)
17.6 Surface Irrigation Decision Variables
305(3)
17.6.1 Field Geometry
306(1)
17.6.2 Field Conditions
307(1)
17.6.3 Management Variables
307(1)
17.7 Hydraulics of Surface Irrigation
308(11)
17.7.1 Hydraulic Surface Irrigation Models
308(6)
17.7.2 Volume Balance Irrigation Models
314(1)
17.7.3 Power Advance Volume Balance Model
315(1)
17.7.4 Evaluation of Infiltration Parameters
316(3)
Questions
319(2)
Part V Methods of Irrigation
321(122)
18 Basin Irrigation
323(9)
18.1 Introduction
323(1)
18.2 Advantages and Disadvantages
323(1)
18.3 Types of Basins
324(1)
18.3.1 Check Basins
324(1)
18.3.2 Ring Basins
324(1)
18.4 Design of Basins
324(4)
18.4.1 Layout
324(1)
18.4.2 Location of Water Source
324(1)
18.4.3 Topography
325(1)
18.4.4 Basin Sizes
325(1)
18.4.5 Basin Width
325(1)
18.4.6 Land Smoothing
325(1)
18.4.7 Stream Size
325(1)
18.4.8 Irrigation Time
325(1)
18.4.9 Inflow Time
326(1)
18.4.10 Application Efficiency
327(1)
18.4.11 Ridge Dimensions
327(1)
18.4.12 Number of Basins Irrigated per Set
327(1)
18.4.13 Delivery System
327(1)
18.4.14 Supply Ditches
327(1)
18.4.15 Supply Ditch Outlets
327(1)
18.4.16 Pipeline Outlets
328(1)
18.4.17 Erosion
328(1)
18.4.18 Outlet Location
328(1)
18.5 Hydraulics of Basin Irrigation
328(1)
18.6 USDA-SCS Design Method
328(3)
18.6.1 Opportunity Time
328(1)
18.6.2 Advance Time
328(1)
18.6.3 Basin Length and Inflow Rate
329(1)
18.6.4 Inflow Time
329(1)
18.6.5 Maximum Flow Depth
329(1)
18.6.6 Design Charts
329(2)
Questions
331(1)
19 Border Irrigation
332(18)
19.1 Introduction
332(1)
19.2 Borders
333(1)
19.3 Layout of Borders
333(14)
19.3.1 Border Length
334(1)
19.3.2 Border Width
335(1)
19.3.3 Slope
335(1)
19.3.4 Ridges
335(1)
19.3.5 Number of Borders and Number of Sets
336(1)
19.3.6 Water Delivery
336(1)
19.3.7 Cutoff Time (Inflow Time)
336(1)
19.3.8 Irrigation Stream Size
337(3)
19.3.9 Simplified Border Irrigation Design
340(7)
19.3.10 Singh--Yu Design Method
347(1)
19.3.11 Selection of Pump and Power Unit
347(1)
Questions
347(3)
20 Furrow Irrigation
350(15)
20.1 Introduction
350(1)
20.2 Classification of Furrows
351(1)
20.3 Layout of a Furrow Irrigation System
351(10)
20.3.1 Source of Water
351(1)
20.3.2 Furrow Length
351(1)
20.3.3 Furrow Slope
352(1)
20.3.4 Furrow Shape
353(1)
20.3.5 Furrow Spacing
353(1)
20.3.6 Cutoff Time (Inflow Time)
354(2)
20.3.7 Inflow Rate (Stream Size)
356(1)
20.3.8 Number of Furrows per Set and Number of Sets
357(1)
20.3.9 Delivery System
357(1)
20.3.10 Two-Point Method for Computing Infiltration Parameters
357(1)
20.3.11 Design Relationships
358(2)
20.3.12 Cutback Systems
360(1)
20.3.13 Selection of Pump and Power Unit
361(1)
20.4 Design of Free-Draining Graded Furrow Systems
361(2)
20.5 Yu--Singh Method for Furrow Irrigation Design
363(1)
Questions
363(2)
21 Sprinkler Irrigation
365(38)
21.1 Introduction
366(1)
21.2 Advantages and Disadvantages
366(1)
21.2.1 Advantages of Sprinkler Irrigation
366(1)
21.2.2 Disadvantages of Sprinkler Irrigation
366(1)
21.3 Classification of Sprinkler Systems
367(4)
21.3.1 Portable Sprinkler Systems
367(1)
21.3.2 Permanent and Semi-permanent Systems
367(1)
21.3.3 Solid-Set Systems
368(1)
21.3.4 Set-Move Systems
368(2)
21.3.5 Spray Sprinkler Systems
370(1)
21.3.6 Continuous-Move Systems
370(1)
21.3.7 Another Classification
371(1)
21.4 Sprinkler Components
371(2)
21.4.1 Pumps
371(1)
21.4.2 Controllers
372(1)
21.4.3 Filters and Injectors
372(1)
21.4.4 Fertilization Application Unit
372(1)
21.4.5 Distribution Pipelines
372(1)
21.4.6 Sprinkler Head
372(1)
21.4.7 Flow Regulators
372(1)
21.5 Types of Sprinklers
373(1)
21.6 Considerations for Design of Sprinkler Systems
373(4)
21.6.1 Field Layout
374(1)
21.6.2 Sprinkler System Selection
375(1)
21.6.3 Distribution of Water
375(1)
21.6.4 Uniformity Coefficient
375(1)
21.6.5 Sprinkler Performance
376(1)
21.6.6 Irrigation Pipelines
376(1)
21.6.7 Hydraulics of Sprinkler Systems
377(1)
21.7 Design of Sprinkler Systems
377(17)
21.7.1 Net Depth of Application (Step 1)
378(1)
21.7.2 Irrigation Interval (Step 2)
379(1)
21.7.3 Gross Depth of Application (Step 3)
379(1)
21.7.4 Application Rate (Step 4)
380(1)
21.7.5 Sprinkler System Capacity (Step 5)
380(3)
21.7.6 Sprinkler Design (Step 6)
383(3)
21.7.7 Lateral Design (Step 7)
386(5)
21.7.8 Mainline Design (Step 8)
391(2)
21.7.9 Selection of Pump and Power (Step 9)
393(1)
21.8 Center-Pivot Systems
394(2)
21.8.1 Types
394(1)
21.8.2 Operation Parameters
395(1)
21.9 Linear-Move Sprinkler Systems
396(1)
21.10 Big Gun and Boom Sprinkler Systems
397(2)
Questions
399(4)
22 Trickle Irrigation
403(40)
22.1 Introduction
404(1)
22.2 Advantages and Disadvantages
405(1)
22.3 Trickle Irrigation Methods
405(2)
22.3.1 Drip Irrigation
406(1)
22.3.2 Bubbler Irrigation
406(1)
22.3.3 Spray Irrigation
406(1)
22.3.4 Subsurface Irrigation
407(1)
22.4 Drip Irrigation System Layout
407(1)
22.5 Types of Emitters
407(3)
22.6 Design Considerations
410(1)
22.7 Basic Hydraulics: Governing Equations
410(8)
22.7.1 Emitter Discharge-Head Relation
411(1)
22.7.2 Conservation of Mass: Continuity Equation
411(1)
22.7.3 Conservation of Momentum
412(1)
22.7.4 Conservation of Energy
412(1)
22.7.5 Head Loss Equation
412(5)
22.7.6 Energy Slope
417(1)
22.7.7 Pressure Profiles along a Lateral
417(1)
22.8 Uniformity of Emitter Flow
418(1)
22.9 Emission Device Selection and Capacity
418(2)
22.10 Methods of Drip Irrigation Design
420(21)
22.10.1 Energy Gradient Approach: Zero Slope
420(5)
22.10.2 Energy Gradient Approach: Nonzero Slope
425(7)
22.10.3 Uniformity-Based Approach
432(2)
22.10.4 Analytical Approach: Constant Discharge
434(3)
22.10.5 Analytical Solution: Variable Discharge
437(2)
22.10.6 Energy Method: Simple Numerical Approximation
439(2)
Questions
441(2)
Part VI Design
443(66)
23 Irrigation Planning
445(11)
23.1 Introduction
445(1)
23.2 Availability of Water Resources
445(1)
23.3 Irrigation Potential
445(2)
23.4 Land Ownership
447(1)
23.5 Energy Requirement for Irrigation Technologies
447(1)
23.6 System Planning
448(3)
23.6.1 Feasibility Study
449(1)
23.6.2 Proposal Preparation
449(1)
23.6.3 Review of System Plan(s)
449(1)
23.6.4 System Implementation
450(1)
23.6.5 Monitoring and Evaluation
450(1)
23.6.6 Financial Analysis
450(1)
23.6.7 Economic Vocabulary
450(1)
23.6.8 Investment Analysis
451(1)
23.6.9 System Worth
451(1)
23.7 System Costs
451(3)
23.7.1 Fixed Costs
451(1)
23.7.2 Variable Costs
452(1)
23.7.3 Depreciation
452(1)
23.7.4 Computation of Variable Costs
452(1)
23.7.5 Service Period
452(2)
Questions
454(2)
24 Land Leveling
456(19)
24.1 Introduction
456(1)
24.2 Preliminary Considerations
456(1)
24.3 Small-Scale Leveling
457(1)
24.4 Large-Scale Leveling
457(1)
24.5 Preparatory Steps
457(1)
24.6 Land Surveying and Mapping
457(2)
24.7 Selection of Field Slopes
459(2)
24.8 Methods for Land-Leveling Design
461(9)
24.8.1 Plane Method
461(5)
24.8.2 Profile Method
466(1)
24.8.3 Plan-Inspection Method
467(2)
24.8.4 Contour-Adjustment Method
469(1)
24.9 Calculation of Earthwork
470(2)
24.9.1 Prismoidal Formula
470(1)
24.9.2 Four-Point Method
470(1)
24.9.3 End-Area Method
471(1)
24.9.4 Horizontal-Plane Method
472(1)
24.9.5 Summation Method
472(1)
24.10 Earthwork Balance
472(1)
24.11 Construction
473(1)
Questions
474(1)
25 Drainage
475(27)
25.1 Introduction
475(1)
25.2 Effect of Excess Water
475(1)
25.3 Indicators of Poor Drainage
476(1)
25.4 Advantages of Drainage
476(1)
25.5 Requirements for Drainage
476(1)
25.6 Drainage Coefficient
476(1)
25.7 Classification of Drainage
476(2)
25.7.1 Surface Drainage
476(1)
25.7.2 Subsurface Drainage
477(1)
25.8 Type of Surface Drainage Systems
478(3)
25.8.1 Random Field Ditches
478(1)
25.8.2 Bedding
479(1)
25.8.3 Parallel Field Ditch System
479(1)
25.8.4 W Ditch System
479(1)
25.8.5 Parallel Lateral Ditch System
480(1)
25.8.6 Cross-Slope Ditch System
480(1)
25.8.7 Land Grading
481(1)
25.9 Types of Subsurface Drainage Systems
481(1)
25.9.1 Natural or Random System
481(1)
25.9.2 Herringbone
481(1)
25.9.3 Grid-Iron System
481(1)
25.9.4 Cutoff or Interceptor
481(1)
25.10 Design of Subsurface Drainage Systems
482(18)
25.10.1 Deep Percolation and Buildup
482(2)
25.10.2 Computation of Drain Spacing under the Steady-State Condition
484(2)
25.10.3 Computation of Drain Spacing under the Unsteady-State Condition
486(2)
25.10.4 Determination of Drain Spacing under the Steady-State Condition Using the Visser Nomograph
488(2)
25.10.5 Determination of Drain Spacing under the Steady-State Condition Using the Graphical Solution of Kirkham
490(1)
25.10.6 Determination of Drain Spacing under the Unsteady-State Condition Using the USBR Graphical Solution When the Drain Is Not at the Impermeable Layer
491(1)
25.10.7 Determination of Drain Spacing under the Unsteady-State Condition Using the USBR Graphical Solution When the Drain Is at the Barrier
492(1)
25.10.8 Selection of Drain Size under the Steady-State Condition
493(1)
25.10.9 Selection of Drain Size under the Unsteady-State Condition
494(2)
25.10.10 Drain Opening
496(1)
25.10.11 Filter Design Criteria
496(1)
25.10.12 Tile Line Grade
496(1)
25.10.13 Tile Drain Material
497(1)
25.10.14 Commonly Used Materials for Drainage Tiles
497(1)
25.10.15 Accessories for Subsurface Drainage Systems
497(2)
25.10.16 Load on Drain Pipe of the Tile Drain
499(1)
25.10.17 Classification of Bedding
500(1)
Questions
500(2)
26 Farm Irrigation System Design
502(7)
26.1 Introduction
502(1)
26.2 Other Advantages of Irrigation Systems
502(1)
26.3 Farm irrigation Systems
502(1)
26.3.1 Methods of Diversion
502(1)
26.3.2 Methods of Conveyance
502(1)
26.3.3 Methods of Application
502(1)
26.3.4 Flow Measurement and Regulation
503(1)
26.4 Design of Irrigation Systems
503(6)
26.4.1 Data Requirements
503(1)
26.4.2 Identification and Evaluation of Water Sources
503(1)
26.4.3 Evaluation of Water Quality
503(1)
26.4.4 Determination of Soil Characteristics
503(1)
26.4.5 Identification of Crops
503(1)
26.4.6 Design Daily Irrigation Requirements
503(2)
26.4.7 Alternative Irrigation System Designs
505(2)
26.4.8 Performance of Alternative Irrigation Systems
507(1)
26.4.9 Annual Cost of Alternative Systems
507(1)
26.4.10 Selection of the System
507(2)
Part VII Irrigation Operation and Management
509(59)
27 Irrigation Scheduling
511(26)
27.1 Introduction
512(1)
27.2 Factors Affecting Irrigation Scheduling
512(1)
27.3 Full or Deficit Irrigation
513(1)
27.4 Methods of Irrigation Scheduling
513(19)
27.4.1 Plant Response to ETC and Soil Water
515(2)
27.4.2 Capacity of Soil Moisture Reservoir
517(2)
27.4.3 Plant Root Zone Depth
519(1)
27.4.4 Soil Water Maintenance
520(3)
27.4.5 Checkbook Accounting Method
523(4)
27.4.6 Simplified Application of ETC Data
527(2)
27.4.7 Water Balance Approach
529(1)
27.4.8 USDA Water Balance Technique
529(1)
27.4.9 Soil Water Measurement Method
530(2)
27.4.10 Plant Status Indicators
532(1)
27.5 Irrigation Models
532(1)
27.6 Real-Time Irrigation Scheduling
532(1)
27.7 Canal Irrigation Scheduling
533(1)
27.7.1 Rigid Schedule
533(1)
27.7.2 Flexible Schedule
533(1)
27.7.3 Warabandi
533(1)
27.7.4 Shejpali
533(1)
Questions
534(3)
28 Environmental Impact
537(6)
28.1 Introduction
537(1)
28.2 Importance of Irrigation Return Flows
537(1)
28.3 Impact on Water Quality
537(3)
28.3.1 Salinity
537(1)
28.3.2 Nutrients
538(1)
28.3.3 Pesticides
538(2)
28.3.4 Temperature
540(1)
28.3.5 Solids
540(1)
28.4 Measures for Reducing Return Flows
540(1)
28.4.1 Water Delivery
540(1)
28.4.2 Farm Water Management
541(1)
28.5 Impact of Drainage
541(2)
29 Economic Analysis
543(8)
29.1 Introduction
543(1)
29.2 Benefits and Costs
543(1)
29.3 Economic Analysis
544(6)
29.3.1 Cash-flow Diagram
544(1)
29.3.2 Single-Payment Factors
545(1)
29.3.3 Uniform Annual Series Factors
546(2)
29.3.4 Uniform Gradient Series Factors
548(2)
Questions
550(1)
30 Irrigation Management
551(4)
30.1 Introduction
551(1)
30.2 Irrigation System
551(1)
30.3 Water Management
552(1)
30.4 Management of Water Structures
552(1)
30.5 Organization and Management
552(2)
30.5.1 Objectives
553(1)
30.5.2 Aids for Operation and Management
553(1)
30.5.3 Resource Mobilization
553(1)
30.5.4 Communication
554(1)
30.5.5 Conflict Resolution
554(1)
30.6 Water Laws and Rights
554(1)
31 Irrigated Agriculture for Food Security
555(13)
31.1 Food Security
555(1)
31.2 Nutritional Security
555(1)
31.3 Population
555(2)
31.3.1 Global Population
555(1)
31.3.2 Country wise Population
556(1)
31.4 Distribution of Land
557(1)
31.4.1 Agricultural Land
557(1)
31.4.2 Irrigated Land
557(1)
31.5 Food Production
558(4)
31.5.1 Global Food Production
558(1)
31.5.2 Country wise Food Production
558(1)
31.5.3 Country wise per Capita Food Production/Supply versus Agricultural Land
559(1)
31.5.4 Food Production from Irrigated and Non-irrigated Lands
560(2)
31.6 Impact of Climate Change
562(1)
31.6.1 Impact on Global Food Production
562(1)
31.6.2 Impact on Water Security
562(1)
31.6.3 Impact on Water Quality
563(1)
31.7 Water Requirements
563(1)
31.7.1 Global Water Requirements for Irrigated Agriculture
563(1)
31.7.2 Countrywise Water Availability
564(1)
31.7.3 Countrywise Crop Water Requirement
564(1)
31.8 Energy Requirement for Irrigated Agriculture
564(4)
Author Index 568(2)
Subject Index 570
Vijay P. Singh is University Distinguished Professor, Regents Professor, and Caroline and William N. Lehrer Distinguished Chair in Water Engineering at Texas A&M University. To date, he has published more than 1370 journal articles, 120 books, and 113 book chapters in hydrology, groundwater, hydraulics, irrigation, pollutant transport, copulas, entropy, and water resources. He has received more than 100 national and international awards, and is past President of the American Institute of Hydrology (AIH) and the American Academy of Water Resources Engineers (AAWRE). Qiong Su is based in the Water Management and Hydrological Science Program at Texas A&M University. She is a member of American Society of Agricultural and Biological Engineers (ASABE) and the American Geophysical Union (AGU). She received several travel awards, graduate student scholarships, and an outstanding contributions in reviewing award. She has published peer-reviewed papers in the areas of hydrology, water quality, irrigation, water-energy nexus, and water resources. She was a teaching assistant for the irrigation engineering course at Texas A&M.