Atjaunināt sīkdatņu piekrišanu

E-grāmata: Iterative Learning Control over Random Fading Channels

(Central Queensland University),
  • Formāts: 356 pages
  • Izdošanas datums: 22-Dec-2023
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781003821090
  • Formāts - PDF+DRM
  • Cena: 162,80 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 356 pages
  • Izdošanas datums: 22-Dec-2023
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781003821090

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Random fading communication is a type of attenuation damage of data over certain propagation media. Establishing a systematic framework of design and analysis of learning control schemes, the book deeply studies the iterative learning control for stochastic systems with random fading communication.



Random fading communication is a type of attenuation damage of data over certain propagation media. Establishing a systematic framework for the design and analysis of learning control schemes, the book studies in depth the iterative learning control for stochastic systems with random fading communication.

The authors introduce both cases where the statistics of the random fading channels are known in advance and unknown. They then extend the framework to other systems, including multi-agent systems, point-to-point tracking systems, and multi-sensor systems. More importantly, a learning control scheme is established to solve the multi-objective tracking problem with faded measurements, which can help practical applications of learning control for high-precision tracking of networked systems.

The book will be of interest to researchers and engineers interested in learning control, data-driven control and networked control systems.

1. Introduction SECTION I Known Channel Statistics
2. Learning Control Over Random Fading Channel
3. Tracking Performance Enhancement by Input Averaging
4. Averaging Techniques for Balancing Learning and Tracking Abilities SECTION II Unknown Channel Statistics
5. Gradient Estimation Method for Unknown Fading Channels
6. Iterative Estimation Method for Unknown Fading Channels
7. Learning-Tracking Framework Under Unknown Nonrepetitive Channel Randomness SECTION III Extensions of Systems and Problems
8. Learning Consensus with Faded Neighborhood Information
9. Point-to-Point Tracking with Fading Communications
10. Point-to-Point Tracking Using Reference Update Strategy
11. Multi-Objective Learning Tracking with Faded Measurements

Dong Shen is a Professor at the School of Mathematics, Renmin University of China, Beijing, China. His research interests include iterative learning control, stochastic optimization, and distributed artificial intelligence.

Xinghuo Yu is the Distinguished Professor, a Vice-Chancellor's Professorial Fellow, and an Associate Deputy Vice-Chancellor at the Royal Melbourne Institute of Technology (RMIT University), Melbourne, Australia. He is a Fellow of the Australian Academy of Science, an Honorary Fellow of Engineers Australia, and a Fellow of the IEEE and several other professional associations.