Atjaunināt sīkdatņu piekrišanu

Job Scheduling Strategies for Parallel Processing: 27th International Workshop, JSSPP 2024, San Francisco, CA, USA, May 31, 2024, Revised Selected Papers 2024 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 197 pages, height x width: 235x155 mm, 76 Illustrations, color; 9 Illustrations, black and white; XI, 197 p. 85 illus., 76 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 14591
  • Izdošanas datums: 21-Dec-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031744292
  • ISBN-13: 9783031744297
  • Mīkstie vāki
  • Cena: 51,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 60,44 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 197 pages, height x width: 235x155 mm, 76 Illustrations, color; 9 Illustrations, black and white; XI, 197 p. 85 illus., 76 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 14591
  • Izdošanas datums: 21-Dec-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031744292
  • ISBN-13: 9783031744297
This book constitutes the refereed proceedings of the 27th International Workshop on Job Scheduling Strategies for Parallel Processing, JSSPP 2024, held in San Francisco, CA, USA, on May 31, 2024.





The 10 full papers included in this book were carefully reviewed and selected from 15 submissions. The JSSPP 2024 covers several interesting problems within the resource management and scheduling domains.

.- Technical papers.
.- Real-life HPC Workload Trace Featuring Refined Job Runtime Estimates.
.- An Empirical Study of Machine Learning-based Synthetic Job Trace Generation Methods.
.- Clustering Based Job Runtime Prediction for Backfilling Using Classification.
.- Launchpad: Learning to Schedule Using Offline and Online RL Methods.
.- Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing.
.- Evaluation of Heuristic Task-to-Thread Mapping Using Static and Dynamic Approaches.
.- Challenges in parallel matrix chain multiplication.
.- A node selection method for on-demand job execution with considering deadline constraints.
.- Maximizing Energy Budget Utilization Using Dynamic Power Cap Control.
.- Run your HPC jobs in Eco-Mode: revealing the potential of user-assisted power capping in supercomputing systems.