Atjaunināt sīkdatņu piekrišanu

E-grāmata: Kinetic Theory for the Low-Density Lorentz Gas

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 108,57 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The Lorentz gas is one of the simplest and most widely-studied models for particle transport in matter. It describes a cloud of non-interacting gas particles in an infinitely extended array of identical spherical scatterers. The model was introduced by Lorentz in 1905 who, following the pioneering ideas of Maxwell and Boltzmann, postulated that in the limit of low scatterer density, the macroscopic transport properties of the model should be governed by a linear Boltzmann equation. The linear Boltzmann equation has since proved a useful tool in the description of various phenomena, including semiconductor physics and radiative transfer. A rigorous derivation of the linear Boltzmann equation from the underlying particle dynamics was given, for random scatterer configurations, in three seminal papers by Gallavotti, Spohn and Boldrighini-Bunimovich-Sinai. The objective of the present study is to develop an approach for a large class of deterministic scatterer configurations, including various types of quasicrystals. We prove the convergence of the particle dynamics to transport processes that are in general (depending on the scatterer configuration) not described by the linear Boltzmann equation. This was previously understood only in the case of the periodic Lorentz gas through work of Caglioti-Golse and Marklof-Strömbergsson. Our results extend beyond the classical Lorentz gas with hard sphere scatterers, and in particular hold for general classes of spherically symmetric finite-range potentials. We employ a rescaling technique that randomises the point configuration given by the scatterers' centers. The limiting transport process is then expressed in terms of a point process that arises as the limit of the randomised point configuration under a certain volume-preserving one-parameter linear group action.
1. Introduction
2. Point sets, point processes and key assumptions
3. First collisions
4. Convergence to a random flight process
5. Examples, extensions, and open questions
Index of notation
Jens Marklof, University of Bristol, United Kingdom.

Andreas Strömbergsson, Uppsala University, Sweden.