|
|
xi | |
|
|
xiii | |
|
|
xv | |
Foreword |
|
xvii | |
Acknowledgments |
|
xix | |
|
1 Knowledge Discovery from Data Streams |
|
|
1 | (6) |
|
|
1 | (1) |
|
1.2 An Illustrative Example |
|
|
2 | (2) |
|
|
4 | (1) |
|
1.4 Data Mining and Data Streams |
|
|
5 | (2) |
|
2 Introduction to Data Streams |
|
|
7 | (26) |
|
|
7 | (2) |
|
2.1.1 Research Issues in Data Stream Management Systems |
|
|
8 | (1) |
|
2.1.2 An Illustrative Problem |
|
|
8 | (1) |
|
2.2 Basic Streaming Methods |
|
|
9 | (14) |
|
2.2.1 Illustrative Examples |
|
|
10 | (1) |
|
2.2.1.1 Counting the Number of Occurrences of the Elements in a Stream |
|
|
10 | (1) |
|
2.2.1.2 Counting the Number of Distinct Values in a Stream |
|
|
11 | (1) |
|
2.2.2 Bounds of Random Variables |
|
|
11 | (2) |
|
|
13 | (1) |
|
2.2.4 Maintaining Simple Statistics from Data Streams |
|
|
14 | (1) |
|
|
14 | (2) |
|
2.2.5.1 Computing Statistics over Sliding Windows: The ADWIN Algorithm |
|
|
16 | (3) |
|
|
19 | (1) |
|
|
19 | (1) |
|
2.2.6.2 Synopsis and Histograms |
|
|
20 | (1) |
|
|
21 | (1) |
|
2.2.6.4 Discrete Fourier Transform |
|
|
22 | (1) |
|
2.3 Illustrative Applications |
|
|
23 | (7) |
|
2.3.1 A Data Warehouse Problem: Hot-Lists |
|
|
23 | (1) |
|
2.3.2 Computing the Entropy in a Stream |
|
|
24 | (3) |
|
2.3.3 Monitoring Correlations Between Data Streams |
|
|
27 | (2) |
|
2.3.4 Monitoring Threshold Functions over Distributed Data Streams |
|
|
29 | (1) |
|
|
30 | (3) |
|
|
33 | (16) |
|
|
33 | (1) |
|
3.2 Tracking Drifting Concepts |
|
|
34 | (8) |
|
3.2.1 The Nature of Change |
|
|
35 | (1) |
|
3.2.2 Characterization of Drift Detection Methods |
|
|
36 | (1) |
|
|
37 | (1) |
|
3.2.2.2 Detection Methods |
|
|
38 | (2) |
|
3.2.2.3 Adaptation Methods |
|
|
40 | (1) |
|
3.2.2.4 Decision Model Management |
|
|
41 | (1) |
|
3.2.3 A Note on Evaluating Change Detection Methods |
|
|
41 | (1) |
|
3.3 Monitoring the Learning Process |
|
|
42 | (4) |
|
3.3.1 Drift Detection Using Statistical Process Control |
|
|
42 | (3) |
|
3.3.2 An Illustrative Example |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
47 | (2) |
|
4 Maintaining Histograms from Data Streams |
|
|
49 | (14) |
|
|
49 | (1) |
|
4.2 Histograms from Data Streams |
|
|
50 | (3) |
|
4.2.1 K-buckets Histograms |
|
|
50 | (1) |
|
4.2.2 Exponential Histograms |
|
|
51 | (1) |
|
4.2.2.1 An Illustrative Example |
|
|
52 | (1) |
|
|
52 | (1) |
|
4.3 The Partition Incremental Discretization Algorithm - PiD |
|
|
53 | (6) |
|
4.3.1 Analysis of the Algorithm |
|
|
56 | (1) |
|
4.3.2 Change Detection in Histograms |
|
|
56 | (1) |
|
4.3.3 An Illustrative Example |
|
|
57 | (2) |
|
4.4 Applications to Data Mining |
|
|
59 | (3) |
|
4.4.1 Applying PiD in Supervised Learning |
|
|
59 | (2) |
|
4.4.2 Time-Changing Environments |
|
|
61 | (1) |
|
|
62 | (1) |
|
5 Evaluating Streaming Algorithms |
|
|
63 | (16) |
|
|
63 | (1) |
|
5.2 Learning from Data Streams |
|
|
64 | (1) |
|
|
65 | (10) |
|
5.3.1 Design of Evaluation Experiments |
|
|
66 | (1) |
|
|
67 | (1) |
|
5.3.2.1 Error Estimators Using a Single Algorithm and a Single Dataset |
|
|
68 | (1) |
|
5.3.2.2 An Illustrative Example |
|
|
68 | (1) |
|
5.3.3 Comparative Assessment |
|
|
69 | (1) |
|
5.3.3.1 The 0-1 Loss Function |
|
|
70 | (1) |
|
5.3.3.2 Illustrative Example |
|
|
71 | (1) |
|
5.3.4 Evaluation Methodology in Non-Stationary Environments |
|
|
72 | (1) |
|
5.3.4.1 The Page-Hinkley Algorithm |
|
|
72 | (1) |
|
5.3.4.2 Illustrative Example |
|
|
73 | (2) |
|
5.4 Lessons Learned and Open Issues |
|
|
75 | (2) |
|
|
77 | (2) |
|
6 Clustering from Data Streams |
|
|
79 | (18) |
|
|
79 | (1) |
|
|
80 | (10) |
|
|
80 | (2) |
|
6.2.2 Partitioning Clustering |
|
|
82 | (1) |
|
6.2.2.1 The Leader Algorithm |
|
|
82 | (1) |
|
6.2.2.2 Single Pass k-Means |
|
|
82 | (1) |
|
6.2.3 Hierarchical Clustering |
|
|
83 | (2) |
|
|
85 | (1) |
|
|
86 | (1) |
|
6.2.4.2 Monitoring Cluster Evolution |
|
|
86 | (1) |
|
|
87 | (1) |
|
6.2.5.1 Computing the Fractal Dimension |
|
|
88 | (1) |
|
6.2.5.2 Fractal Clustering |
|
|
88 | (2) |
|
|
90 | (6) |
|
6.3.1 A Hierarchical Approach |
|
|
91 | (1) |
|
6.3.1.1 Growing the Hierarchy |
|
|
91 | (3) |
|
6.3.1.2 Aggregating at Concept Drift Detection |
|
|
94 | (2) |
|
6.3.1.3 Analysis of the Algorithm |
|
|
96 | (1) |
|
|
96 | (1) |
|
7 Frequent Pattern Mining |
|
|
97 | (18) |
|
7.1 Introduction to Frequent Itemset Mining |
|
|
97 | (4) |
|
|
98 | (2) |
|
7.1.2 The FP-growth Algorithm |
|
|
100 | (1) |
|
7.1.3 Summarizing Itemsets |
|
|
100 | (1) |
|
|
101 | (2) |
|
7.3 Mining Frequent Itemsets from Data Streams |
|
|
103 | (7) |
|
|
104 | (1) |
|
7.3.1.1 The LossyCounting Algorithm |
|
|
104 | (1) |
|
7.3.1.2 Frequent Itemsets Using LossyCounting |
|
|
104 | (1) |
|
7.3.2 Mining Recent Frequent Itemsets |
|
|
105 | (1) |
|
7.3.2.1 Maintaining Frequent Itemsets in Sliding Windows |
|
|
105 | (1) |
|
7.3.2.2 Mining Closed Frequent Itemsets over Sliding Windows |
|
|
106 | (2) |
|
7.3.3 Frequent Itemsets at Multiple Time Granularities |
|
|
108 | (2) |
|
7.4 Sequence Pattern Mining |
|
|
110 | (3) |
|
7.4.1 Reservoir Sampling for Sequential Pattern Mining over Data Streams |
|
|
111 | (2) |
|
|
113 | (2) |
|
8 Decision Trees from Data Streams |
|
|
115 | (18) |
|
|
115 | (1) |
|
8.2 The Very Fast Decision Tree Algorithm |
|
|
116 | (3) |
|
8.2.1 VFDT ---The Base Algorithm |
|
|
116 | (2) |
|
8.2.2 Analysis of the VFDT Algorithm |
|
|
118 | (1) |
|
8.3 Extensions to the Basic Algorithm |
|
|
119 | (10) |
|
8.3.1 Processing Continuous Attributes |
|
|
119 | (1) |
|
8.3.1.1 Exhaustive Search |
|
|
119 | (2) |
|
8.3.1.2 Discriminant Analysis |
|
|
121 | (2) |
|
8.3.2 Functional Tree Leaves |
|
|
123 | (1) |
|
|
124 | (2) |
|
8.3.3.1 Detecting Changes |
|
|
126 | (1) |
|
8.3.3.2 Reacting to Changes |
|
|
127 | (1) |
|
|
128 | (1) |
|
8.4 OLIN: Info-Fuzzy Algorithms |
|
|
129 | (3) |
|
|
132 | (1) |
|
9 Novelty Detection in Data Streams |
|
|
133 | (20) |
|
|
133 | (1) |
|
|
134 | (1) |
|
9.2.1 Desiderata for Novelty Detection |
|
|
135 | (1) |
|
9.3 Novelty Detection as a One-Class Classification Problem |
|
|
135 | (6) |
|
9.3.1 Autoassociator Networks |
|
|
136 | (1) |
|
9.3.2 The Positive Naive-Bayes |
|
|
137 | (1) |
|
9.3.3 Decision Trees for One-Class Classification |
|
|
138 | (1) |
|
|
138 | (1) |
|
9.3.5 Evaluation of One-Class Classification Algorithms |
|
|
139 | (2) |
|
9.4 Learning New Concepts |
|
|
141 | (3) |
|
9.4.1 Approaches Based on Extreme Values |
|
|
141 | (1) |
|
9.4.2 Approaches Based on the Decision Structure |
|
|
142 | (1) |
|
9.4.3 Approaches Based on Frequency |
|
|
143 | (1) |
|
9.4.4 Approaches Based on Distances |
|
|
144 | (1) |
|
9.5 The Online Novelty and Drift Detection Algorithm |
|
|
144 | (7) |
|
9.5.1 Initial Learning Phase |
|
|
145 | (1) |
|
9.5.2 Continuous Unsupervised Learning Phase |
|
|
146 | (1) |
|
9.5.2.1 Identifying Novel Concepts |
|
|
147 | (2) |
|
9.5.2.2 Attempting to Determine the Nature of New Concepts |
|
|
149 | (1) |
|
9.5.2.3 Merging Similar Concepts |
|
|
149 | (1) |
|
9.5.2.4 Automatically Adapting the Number of Clusters |
|
|
150 | (1) |
|
|
150 | (1) |
|
|
151 | (2) |
|
10 Ensembles of Classifiers |
|
|
153 | (14) |
|
|
153 | (2) |
|
10.2 Linear Combination of Ensembles |
|
|
155 | (1) |
|
10.3 Sampling from a Training Set |
|
|
156 | (4) |
|
|
157 | (1) |
|
|
158 | (2) |
|
|
160 | (2) |
|
|
160 | (1) |
|
|
161 | (1) |
|
10.4.2.1 Generating Forest of Trees |
|
|
162 | (1) |
|
10.4.2.2 Classifying Test Examples |
|
|
162 | (1) |
|
10.5 Adapting to Drift Using Ensembles of Classifiers |
|
|
162 | (3) |
|
10.6 Mining Skewed Data Streams with Ensembles |
|
|
165 | (1) |
|
|
166 | (1) |
|
11 Time Series Data Streams |
|
|
167 | (18) |
|
11.1 Introduction to Time Series Analysis |
|
|
167 | (2) |
|
|
167 | (2) |
|
|
169 | (1) |
|
|
169 | (1) |
|
11.2 Time-Series Prediction |
|
|
169 | (8) |
|
|
170 | (3) |
|
11.2.2 Least Mean Squares |
|
|
173 | (1) |
|
11.2.3 Neural Nets and Data Streams |
|
|
173 | (1) |
|
11.2.3.1 Stochastic Sequential Learning of Neural Networks |
|
|
174 | (1) |
|
11.2.3.2 Illustrative Example: Load Forecast in Data Streams |
|
|
175 | (2) |
|
11.3 Similarity between Time-Series |
|
|
177 | (3) |
|
11.3.1 Euclidean Distance |
|
|
177 | (1) |
|
11.3.2 Dynamic Time-Warping |
|
|
178 | (2) |
|
11.4 Symbolic Approximation - SAX |
|
|
180 | (4) |
|
|
180 | (1) |
|
11.4.1.1 Piecewise Aggregate Approximation (PAA) |
|
|
181 | (1) |
|
11.4.1.2 Symbolic Discretization |
|
|
181 | (1) |
|
11.4.1.3 Distance Measure |
|
|
182 | (1) |
|
|
182 | (1) |
|
11.4.2 Finding Motifs Using SAX |
|
|
183 | (1) |
|
11.4.3 Finding Discords Using SAX |
|
|
183 | (1) |
|
|
184 | (1) |
|
12 Ubiquitous Data Mining |
|
|
185 | (20) |
|
12.1 Introduction to Ubiquitous Data Mining |
|
|
185 | (1) |
|
12.2 Distributed Data Stream Monitoring |
|
|
186 | (7) |
|
12.2.1 Distributed Computing of Linear Functions |
|
|
187 | (1) |
|
12.2.1.1 A General Algorithm for Computing Linear Functions |
|
|
188 | (1) |
|
12.2.2 Computing Sparse Correlation Matrices Efficiently |
|
|
189 | (2) |
|
12.2.2.1 Monitoring Sparse Correlation Matrices |
|
|
191 | (1) |
|
12.2.2.2 Detecting Significant Correlations |
|
|
192 | (1) |
|
12.2.2.3 Dealing with Data Streams |
|
|
192 | (1) |
|
12.3 Distributed Clustering |
|
|
193 | (4) |
|
12.3.1 Conquering the Divide |
|
|
193 | (1) |
|
12.3.1.1 Furthest Point Clustering |
|
|
193 | (1) |
|
12.3.1.2 The Parallel Guessing Clustering |
|
|
193 | (1) |
|
12.3.2 DGClust - Distributed Grid Clustering |
|
|
194 | (1) |
|
12.3.2.1 Local Adaptive Grid |
|
|
194 | (1) |
|
12.3.2.2 Frequent State Monitoring |
|
|
195 | (1) |
|
12.3.2.3 Centralized Online Clustering |
|
|
196 | (1) |
|
12.4 Algorithm Granularity |
|
|
197 | (6) |
|
12.4.1 Algorithm Granularity Overview |
|
|
199 | (1) |
|
12.4.2 Formalization of Algorithm Granularity |
|
|
200 | (1) |
|
12.4.2.1 Algorithm Granularity Procedure |
|
|
200 | (1) |
|
12.4.2.2 Algorithm Output Granularity |
|
|
201 | (2) |
|
|
203 | (2) |
|
|
205 | (4) |
|
13.1 The Next Generation of Knowledge Discovery |
|
|
205 | (1) |
|
13.1.1 Mining Spatial Data |
|
|
206 | (1) |
|
13.1.2 The Time Situation of Data |
|
|
206 | (1) |
|
|
206 | (1) |
|
|
206 | (3) |
|
|
209 | (2) |
|
|
209 | (1) |
|
|
209 | (2) |
Bibliography |
|
211 | (24) |
Index |
|
235 | |