Atjaunināt sīkdatņu piekrišanu

E-grāmata: Knowledge Grid: Toward Cyber-Physical Society 2nd Revised edition [World Scientific e-book]

(Aston Univ, Uk)
  • Formāts: 524 pages
  • Izdošanas datums: 06-Nov-2012
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814291781
  • World Scientific e-book
  • Cena: 179,80 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 524 pages
  • Izdošanas datums: 06-Nov-2012
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814291781
The Knowledge Grid is an intelligent and sustainable interaction environment that consists of autonomous individuals, self-organized semantic communities, adaptive networking mechanisms, evolving semantic link networks keeping meaningful connection between individuals, flows for dynamic resource sharing, and mechanisms supporting effective resource management and providing appropriate knowledge services for learning, innovation, teamwork, problem solving, and decision making. This book presents its methodology, theory, models and applications systematically for the first time.Its second edition fulfils the ideal of the Knowledge Grid by includingmany new contents, including: (1) The insight of cyber-physical society; (2) The systematic method of semantic link network that supports uncertainty management, discovery of semantic links and semantic communities, autonomous semantic data model, and cyber-physical-socio semantic link network; (3) Semantic peer-to-peer infrastructures for efficient knowledge sharing; (4) A new centrality measure of network; and (5) The Energy-Knowledge Grid. This new edition will undoubtedly provide inspiring materials for researchers, academics, practitioners and students.
Foreword v
Preface vii
1 The Knowledge Grid Methodology 1(64)
1.1 The Knowledge Space - Knowledge as a Space
1(6)
1.2 The Cyber Space
7(2)
1.3 Effort Toward the Intelligent Interconnection Environment
9(5)
1.4 Challenge and Opportunity
14(4)
1.5 The Knowledge Grid Environment
18(11)
1.5.1 The notion
18(2)
1.5.2 Virtual characteristic
20(1)
1.5.3 Social characteristic
21(1)
1.5.4 Adaptive characteristic
22(1)
1.5.5 Semantic characteristic
23(6)
1.6 Epistemology and Knowledge
29(3)
1.7 Ontology
32(1)
1.8 System Methodology
33(7)
1.8.1 The theory of dissipative structure
33(1)
1.8.2 Synergetic theory
34(1)
1.8.3 The hypercycle - a principle of natural self-organization
35(2)
1.8.4 General principles and strategies
37(3)
1.9 Dynamic Knowledge Management
40(3)
1.10 The Knowledge Grid as a Research Area
43(22)
1.10.1 Research Scope
43(2)
1.10.2 Parameters
45(1)
1.10.3 Distinctive characteristics of the Knowledge Grid
46(1)
1.10.4 The Knowledge Grid's general research issues
47(3)
1.10.5 Difference between the Web and the Knowledge Grid
50(1)
1.10.6 The technological basis of the Knowledge Grid
51(1)
1.10.7 A new dream
52(5)
1.10.8 Beyond the vision of Turing and Bush
57(8)
2 The Semantic Link Network 65(146)
2.1 The Idea of Mapping
65(2)
2.2 Basic Concepts and Characteristics
67(11)
2.3 Relational Reasoning and the Semantic Space
78(4)
2.4 An Algebraic Model of the SLN
82(4)
2.5 SLN Normalization
86(5)
2.5.1 The normal forms of an SLN
86(1)
2.5.2 Operations on SLNs
87(4)
2.6 Constraints and Displaying
91(1)
2.7 SLN Ranking
92(4)
2.7.1 Hyperlink network ranking
92(1)
2.7.2 SLN ranking
93(1)
2.7.3 A ranking algorithm
94(2)
2.8 Implementation of SLN Operations
96(6)
2.8.1 Matching between SLNs
96(3)
2.8.2 The union operation
99(2)
2.8.3 SLN-level reasoning
101(1)
2.9 SLN Analogical Reasoning
102(8)
2.9.1 Analogical reasoning modes
103(4)
2.9.2 Process of analogical reasoning
107(3)
2.10 Dynamic SLN
110(6)
2.11 SLN Abstraction
116(4)
2.12 Application: SLN-based Image Retrieval
120(4)
2.13 Application: Active Document Framework (ADF)
124(3)
2.14 Application: e-Learning
127(3)
2.15 Potential Applications, Relevant Work and Q&A
130(4)
2.16 SLN 2.0: Autonomous Semantic Data Model
134(7)
2.17 Probabilistic Semantic Link Network
141(3)
2.18 Discovering Semantic Link Network
144(7)
2.18.1 The General process
144(2)
2.18.2 Discover semantic links by content analysis
146(2)
2.18.3 Enrich semantic links through evolution
148(3)
2.19 SLN 3.0: Cyber-Physical-Socio-Mental Network
151(47)
2.19.1 Origin of semantics
151(4)
2.19.2 Characteristics
155(1)
2.19.3 Intention and extension
156(2)
2.19.4 Semantic Link Network of events SLN-E
158(2)
2.19.5 Through minds via words
160(6)
2.19.6 Through society, culture and thought
166(6)
2.19.7 Principles of emerging semantics
172(4)
2.19.8 Discovering semantic communities-semantic localization
176(6)
2.19.9 SLN-based relation and knowledge evolution
182(2)
2.19.10 Building and performing semantic images
184(2)
2.19.11 Structure and networking rules of social space
186(2)
2.19.12 Communication rules and principles
188(3)
2.19.13 Influence between mental space and social space
191(5)
2.19.14 Application in cognitive-behavioral therapy
196(2)
2.20 Principles of Mental Concepts
198(5)
2.21 Discussion: Philosophy, Language and Semantics
203(8)
3 A Resource Space Model 211(60)
3.1 Examples of Using Multi-Dimensional Classifications
211(2)
3.2 The Virtual Grid
213(2)
3.3 The Resource Space Model (RSM)
215(7)
3.3.1 Resource spaces
215(3)
3.3.2 Normal forms
218(4)
3.4 Criteria for Designing Resource Spaces
222(2)
3.5 Designing Resource Spaces
224(1)
3.6 Representation of Resources
225(1)
3.7 The Resource Using Mechanism (RUM)
226(2)
3.8 Comparisons
228(4)
3.9 Dealing with Exponential Growth of Resources
232(3)
3.10 Extension of the Resource Space Model
235(9)
3.10.1 Formalizing resource space
235(1)
3.10.2 Resource space schemas and normal forms
235(6)
3.10.3 Topological properties of resource spaces
241(3)
3.11 Integrity Constraint for the Resource Space Model
244(10)
3.11.1 Entity integrity constraints
244(4)
3.11.2 The membership integrity constraint
248(1)
3.11.3 Referential integrity constraints
248(4)
3.11.4 User-defined integrity constraints
252(2)
3.12 Storage for Resource Space and Adaptability
254(3)
3.13 Application: Faceted Navigation
257(4)
3.14 Application: Personal Resource Space
261(6)
3.14.1 The idea
261(4)
3.14.2 Uploading linked resources
265(2)
3.15 The Dimension
267(4)
4 The Single Semantic Image 271(42)
4.1 Obtaining Single Semantic Image from Multi-Facet Views
271(2)
4.2 Combining SLN and RSM
273(2)
4.3 The SSeI Mechanism
275(3)
4.4 The Single Semantic Image Query Language
278(3)
4.5 SSeIQL Syntax Specification
281(8)
4.5.1 Space definition
281(2)
4.5.2 Multiple space manipulation
283(2)
4.5.3 Resource modification
285(2)
4.5.4 Operating semantic link space
287(1)
4.5.5 View definition
287(2)
4.6 The Programming Environment
289(3)
4.7 The Single Semantic Image Browser
292(3)
4.8 The SSeI in a Peer-to-Peer Semantic Link Network
295(3)
4.9 Abstraction Level, Time, Epistemology, Location and Space
298(2)
4.10 A Semantic Lens
300(4)
4.11 A Semantic Lens for Text Visualization
304(4)
4.12 Single Semantic Image through Multiple Channels
308(3)
4.13 Philosophical Discussion
311(2)
5 Knowledge Flow 313(26)
5.1 Concept
313(3)
5.2 A Knowledge Flow Process Model
316(1)
5.3 Peer-to-Peer Knowledge Sharing
317(2)
5.4 Knowledge Intensity
319(1)
5.5 Knowledge Flow Principles
320(2)
5.6 Computational Model of Knowledge Intensity
322(4)
5.6.1 Computing knowledge intensity in a closed environment
322(2)
5.6.2 Computing knowledge intensity in an open environment
324(1)
5.6.3 Knowledge intensity evaluation
325(1)
5.7 Knowledge Spiral Model
326(1)
5.8 Knowledge Flow Network Planning
327(4)
5.8.1 Composition operations and principles
328(1)
5.8.2 Knowledge flow network components
329(2)
5.8.3 The team organization principle
331(1)
5.9 Resource-Mediated Knowledge Flows
331(5)
5.10 Exploring Knowledge Flows
336(3)
5.10.1 Market mechanism
336(1)
5.10.2 Knowledge growth
337(2)
6 Exploring Scale-Free Network 339(54)
6.1 Concepts
339(2)
6.2 The Topologies of Some Real Networks
341(11)
6.2.1 The Internet
341(2)
6.2.2 The World Wide Web
343(2)
6.2.3 Networks of citations of scientific papers
345(2)
6.2.4 Networks of collaboration
347(2)
6.2.5 Networks of human language
349(2)
6.2.6 Other networks
351(1)
6.3 Random Graph Theory
352(2)
6.4 The Small-World Theory
354(2)
6.5 Modeling Measures for Live Scale-Free Networks
356(13)
6.5.1 The Barabasi-Albert model
357(2)
6.5.2 Generalizations of the Barabasi-Albert model
359(2)
6.5.2.1 Link rewiring
359(1)
6.5.2.2 Node attractiveness
360(1)
6.5.3 The idea of random fraction for Web growth
361(1)
6.5.4 The Krapivsky-Redner model
362(2)
6.5.5 The Simon model
364(1)
6.5.6 An example from software engineering
365(1)
6.5.7 Other growth models with constraints
366(3)
6.5.7.1 Decaying networks
366(1)
6.5.7.2 Aging networks
366(1)
6.5.7.3 Fitness networks
367(1)
6.5.7.4 Age or cost constrained networks
368(1)
6.6 Modeling Actual Scale-Free Network
369(21)
6.6.1 An urn transfer model for a live scale-free network
371(5)
6.6.2 A directed evolving graph for a live scale-free network
376(4)
6.6.3 Experiments and analysis
380(5)
6.6.4 Further consideration and comparisons
385(2)
6.6.5 Proof of the proposition
387(3)
6.7 Summary and Implications
390(3)
7 Topological Centrality in Social Network 393(14)
7.1 Principles of Influence
393(1)
7.2 Basic Concept
394(2)
7.3 Calculating Topological Centrality
396(3)
7.4 Discovering Research Communities
399(3)
7.5 Discovering Backbone in Research Network
402(2)
7.6 Discussion
404(3)
8 A Peer-to-Peer SLN for Decentralized Knowledge Sharing 407(40)
8.1 Decentralized Peer-to-Peer Recommendation and Query
407(4)
8.1.1 Peer-to-Peer networks
408(1)
8.1.2 Towards a semantic Peer-to-Peer network
409(1)
8.1.3 Characteristic of the Peer-to-Peer Semantic Link Network
410(1)
8.2 Basic Idea and Architecture
411(2)
8.3 Semantic Links for Peer-to-Peer Networking
413(5)
8.3.1 Explicit semantic link
413(1)
8.3.2 Implicit semantic link
413(4)
8.3.3 Reasoning operations
417(1)
8.4 Communities in P2P-SLN
418(2)
8.5 Routing Strategies and Process
420(4)
8.5.1 Routing process
420(2)
8.5.2 Adaptive TTL
422(1)
8.5.3 Semantics-based neighbor selection
423(1)
8.6 Self-organization of Communities and Evolution
424(1)
8.6.1 Peer join
424(1)
8.6.2 Peer departure
425(1)
8.7 Application and Experiment
425(13)
8.7.1 Instantiation of P2P-SLN framework
426(1)
8.7.2 Peer join and departure
427(2)
8.7.3 Query routing process
429(1)
8.7.4 Performance analysis
430(2)
8.7.5 Experiment
432(7)
8.7.5.1 Term vector simulation results
432(3)
8.7.5.2 Query-answer simulation results
435(2)
8.7.5.3 Semantic query experiment
437(1)
8.8 Performance of P2P-SLN
438(1)
8.9 Incorporating Recommendation
439(3)
8.9.1 Recommendation process
439(1)
8.9.2 Query routing process
440(1)
8.9.3 Experiment
441(1)
8.10 Toward P2P Knowledge Flow Networking
442(5)
9 P2P Semantic Overlay Networks 447(28)
9.1 Structure Approaches
447(21)
9.1.1 An order-preserve structured P2P network
449(6)
9.1.2 Distributed suffix tree
455(4)
9.1.3 IMAGINE - A general index structure over structured DHT P2P networks
459(3)
9.1.4 Building small-world network in multi-dimensional space
462(6)
9.2 Unstructured Approaches
468(5)
9.2.1 Explicit semantic Link
468(3)
9.2.2 Gossip through semantic unstructured P2P network
471(2)
9.3 Discussion
473(2)
10 The Energy-Knowledge Grid 475(14)
10.1 The Knowledge Grid meets the Smart Grid
475(2)
10.2 Architecture and Characteristics
477(6)
10.3 Multi-Dimensional Devices and Requirements
483(2)
10.4 Multi-Layer Complex Networks
485(4)
Bibliography 489(14)
Index 503