Atjaunināt sīkdatņu piekrišanu

E-grāmata: Knowledge Representation Techniques: A Rough Set Approach

  • Formāts: PDF+DRM
  • Sērija : Studies in Fuzziness and Soft Computing 202
  • Izdošanas datums: 31-May-2007
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540335191
  • Formāts - PDF+DRM
  • Cena: 213,54 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Studies in Fuzziness and Soft Computing 202
  • Izdošanas datums: 31-May-2007
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540335191

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

1. 1 Background The basis for the material in this book centers around research done in an ongoing long-term project which focuses on the development of highly au- 1 tonomousunmannedaerialvehiclesystems. Theactualplatformwhichserves as a case study for the research in this book will be described in detail later in this chapter. Before doing that, a brief background of the motivations - hind this research will be provided. One of the main research topics in the project is knowledge representation and reasoning and its use in Uav pl- forms. A very strong constraint has been placed on the nature of research done in the project where theoretical results, to the greatest extent possible, should serve as a basis for tractable reasoning mechanisms for use in a fully deployed autonomous Uav operating under soft real-time constraints asso- ated with the types of mission scenarios envisioned. Considering that much of the work with knowledge representation in this context focuses on application domains where one can only hope for an incomplete characterization of such domains, this methodological constraint has proven to be quite challenging since, in essence, the focus is on tractable approximate and nonmonotonic reasoning systems. As is well known, until recently, nonmonotonic formalisms have had a notorious reputation for lack of tractable and scalable reasoning systems.

Recenzijas

From the reviews:









"Knowledge representation is one of the most important elements of Artificial Intelligence, representing the study of how knowledge about the world can be represented and what kinds of reasoning can be done with that knowledge. The book contains three parts and is founded on the concept of rough sets. This book is recommended to researchers interested in studying and applying rough set theory in various domains." (Ion Iancu, Zentralblatt MATH, Vol. 1131 (9), 2008)

and Preliminaries.- Basic Notions.- Rough Sets.- Relational and
Deductive Databases.- Non-Monotonic Reasoning.- From Relations to Knowledge
Representation.- Rough Knowledge Databases.- Combining Rough and Crisp
Knowledge.- Weakest Sufficient and Strongest Necessary Conditions.- CAKE:
Computer Aided Knowledge Engineering.- Formalization of Default Logic Using
CAKE.- A UAV Scenario: A Case Study.- From Sensors to Relations.- Information
Granules.- Tolerance Spaces.- A Rough Set Approach to Machine Learning.- UAV
Learning Process: A Case Study.