Atjaunināt sīkdatņu piekrišanu

E-grāmata: Knowledge Science, Engineering and Management: 16th International Conference, KSEM 2023, Guangzhou, China, August 16-18, 2023, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 14117
  • Izdošanas datums: 08-Aug-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031402838
  • Formāts - EPUB+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 14117
  • Izdošanas datums: 08-Aug-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031402838

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This volume set constitutes the refereed proceedings of the 16th International Conference on Knowledge Science, Engineering and Management, KSEM 2023, which was held in Guangzhou, China, during August 16–18, 2023. 

The 114 full papers and 30 short papers included in this book were carefully reviewed and selected from 395 submissions. They were organized in topical sections as follows: knowledge science with learning and AI; knowledge engineering research and applications; knowledge management systems; and emerging technologies for knowledge science, engineering and management. 
Knowledge Science with Learning and AI.- Joint Feature Selection and
Classifier Parameter Optimization: A Bio-inspired Approach.- Automatic
Gaussian Bandwidth Selection for Kernel Principal Component
Analysis.- Boosting LightWeight Depth Estimation Via Knowledge
Distillation.- Graph Neural Network with Neighborhood Reconnection.- Critical
Node Privacy Protection Based on Random Pruning of Critical
Trees.- DSEAformer: Forecasting by De-stationary Autocorrelation with
Edgebound.- Multitask-based Cluster Transmission for Few-Shot Text
Classification.- Hyperplane Knowledge Graph Embedding with Path Neighborhoods
and Mapping Properties.- RTAD-TP: Real- Time Anomaly Detection Algorithm for
Univariate Time Series Data Based on Two- Parameter
Estimation.- Multi-Sampling Item Response Ranking Neural Cognitive Diagnosis
with Bilinear Feature Interaction.- A Sparse Matrix Optimization Method for
Graph Neural Networks Training.- Dual-dimensional Refinement of Knowledge
Graph Embedding Representation.- Contextual Information Augmented Few-Shot
Relation Extraction.- Dynamic and Static Feature-aware Microservices
Decomposition via Graph Neural Networks.- An Enhanced Fitness-distance
Balance Slime Mould Algorithm and Its Application in Feature Selection.- Low
Redundancy Learning for Unsupervised Multi-view Feature Selection.- Dynamic
Feed-Forward LSTM.- Black-box Adversarial Attack on Graph Neural Networks
Based on Node Domain Knowledge.- Role and Relationship-Aware Representation
Learning for Complex Coupled Dynamic Heterogeneous Networks.- Twin Graph
Attention Network with Evolution Pattern Learner for Few-Shot Temporal
Knowledge Graph Completion.- Subspace Clustering with Feature Grouping for
Categorical Data.- Learning Graph Neural Networks on Feature-Missing
Graphs.- Dealing with Over-reliance on Background Graph for Few-shot
Knowledge Graph Completion.- Kernel-based feature extraction for time series
clustering.- Cluster Robust Inference for embedding-based Knowledge Graph
Completion.- Community-enhanced Contrastive Siamese networks for Graph
Representation Learning.- Distant Supervision Relation Extraction with
Improved PCNN and Multi-level Attention.- Enhancing Adversarial Robustness
via Anomaly-aware Adversarial Training.- An Improved Cross-Validated
Adversarial Validation Method.- EACCNet: Enhanced Auto-Cross Correlation
Network for Few-Shot Classification.- Joint Label-Structure Estimation from
Multifaceted Graph Data.- Dual Channel Knowledge Graph Embedding with
Ontology Guided Data Augmentation.- Multi-Dimensional Graph Rule
Learner.- MixUNet: A Hybrid Retinal Vessels Segmentation Model Combining The
Latest CNN and MLPs.- Robust Few-shot Graph Anomaly Detection via Graph
Coarsening.- An Evaluation Metric for Prediction Stability with Imprecise
Data.- ReducingThe Teacher-Student Gap Via Elastic Student.