Atjaunināt sīkdatņu piekrišanu

E-grāmata: Knowledge Science, Engineering and Management: 16th International Conference, KSEM 2023, Guangzhou, China, August 16-18, 2023, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 14118
  • Izdošanas datums: 08-Aug-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031402869
  • Formāts - PDF+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 14118
  • Izdošanas datums: 08-Aug-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031402869

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This volume set constitutes the refereed proceedings of the 16th International Conference on Knowledge Science, Engineering and Management, KSEM 2023, which was held in Guangzhou, China, during August 16–18, 2023. 

The 114 full papers and 30 short papers included in this book were carefully reviewed and selected from 395 submissions. They were organized in topical sections as follows: knowledge science with learning and AI; knowledge engineering research and applications; knowledge management systems; and emerging technologies for knowledge science, engineering and management. 
Knowledge Engineering Research and Applications.- Knowing before Seeing:
Incorporating Post-Retrieval Information into Pre-Retrieval Query Intention
Classification.- LSRN: Live-Streaming Identification Based on Reasoning
Network with Core Traffic Set.- Implicit Offensive Speech Detection Based on
Multi-feature Fusion.- SIE-YOLOv5: Improved YOLOv5 for Small Object Detection
in Drone-Captured-Scenarios.- Learning-based Dichotomy Graph Sketch for
Summarizing Graph Streams with High Accuracy.- SNAFA-Net: Squared
Normalization Attention and Feature Alignment for Visible-Infrared Person
Re-identification.- A comparative study of chatbot response generation:
traditional approaches versus large language models.- Investigating the
Impact of Product Contours on User Perception of Product
Attributes.- Conf-UNet: A model for speculation on unknown Oracle Bone
Characters.- An Efficient One-Shot Network and Robust Data Associations in
Multi-Pedestrian Tracking.- Sampling Spatial-Temporal Attention Network for
Traffic Forecasting.- ST-MAN: Spatio-Temporal Multimodal Attention Network
for Traffic Prediction.- Sparse-view CT Reconstruction via Implicit Neural
Intensity Functions.- Tennis action recognition based on multi-branch mixed
attention.- Cascade Sampling via Dual Uncertainty for Active Entity
Alignment.- Template Shift and Background Suppression for Visual Object
Tracking.- Reversible Data Hiding in Encrypted Images Based on A
Multi-Granularity Adaptive Classification Mechanism.- Enhanced Entity
Interaction Modeling for Multi-modal Entity Alignment.- Monte Carlo Medical
Volume Rendering Denoising via Auxiliary Feature Guided Self-Attention and
Convolution Integrated.- View Distribution Alignment with Progressive
Adversarial Learning for UAV Visual Geo-Localization.- HBay: Predicting Human
Mobility via Hyperspherical Bayesian Learning.- Spatial-Temporal Diffusion
Probabilistic Learning for Crime Prediction.- DBA: An Efficient Approach to
Boost Transfer-based Adversarial Attack Performance through Information
Deletion.- A Graph Partitioning Algorithm Based on Graph Structure and Label
Propagation for Citation Network Prediction.- Hybrid Heterogeneous Graph
Neural Networks for Fund Performance Prediction.- WGCN: A Novel Wavelet Graph
Neural Network for Metro Ridership Prediction.- GMiRec: A Multi-image Visual
Recommendation Model based on a Gated Neural Network.- Semi-supervised entity
alignment via noisy student-based self training.- Modeling Chinese Ancient
Book Catalog.- JOINT EXTRACTION OF NESTED ENTITIES AND RELATIONS BASED ON
MULTI-TASK LEARNING.- A Grasping System with Structured Light 3D Machine
Vision Guided Strategy Optimization.- A Cognitive Knowledge Enriched Joint
Framework for Social Emotion and Cause Mining.- TKSP: Long-term Stance
Prediction for Social Media Users by Fusing Time Series Features and Event
Dynamic Evolution Knowledge.- A Cross-Document Coreference Resolution
Approach to Low-Resource Languages.- Network Flow Based IoT Anomaly Detection
Using Graph Neural Network.- Disentangled Multi-factor Graph Neural Network
for Non-coding RNA-drug Resistance Association Prediction.