Atjaunināt sīkdatņu piekrišanu

E-grāmata: Knowledge Science, Engineering and Management: 16th International Conference, KSEM 2023, Guangzhou, China, August 16-18, 2023, Proceedings, Part IV

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This volume set constitutes the refereed proceedings of the 16th International Conference on Knowledge Science, Engineering and Management, KSEM 2023, which was held in Guangzhou, China, during August 16–18, 2023. 

The 114 full papers and 30 short papers included in this book were carefully reviewed and selected from 395 submissions. They were organized in topical sections as follows: knowledge science with learning and AI; knowledge engineering research and applications; knowledge management systems; and emerging technologies for knowledge science, engineering and management.
Emerging technologies for Knowledge science, engineering and
management.- Federated Prompting and Chain-of-Thought Reasoning for Improving
LLMs Answering.- Advancing Domain Adaptation of BERT by Learning Domain Term
Semantics.- Deep Reinforcement Learning for Group-Aware Robot Navigation in
Crowds.- An Enhanced Distributed Algorithm for Area Skyline Computation based
on Apache Spark.- TCMCoRep: Traditional Chinese Medicine data mining with
Contrastive Graph Representation Learning.- Local-Global Fusion Augmented
Graph Contrastive Learning Based on Generative Models.- PRACM: Predictive
Rewards for Actor-Critic with Mixing Function in Multi-Agent Reinforcement
Learning.- A Cybersecurity Knowledge Graph Completion Method for Scalable
Scenarios.- Research on remote sensing image classification based on Transfer
learning and Data Augmentation.- Multivariate Long-Term Traffic Forecasting
with Graph Convolutional Network and Historical Attention
Mechanism.- Multi-hop Reading Comprehension Learning Method Based on Answer
Contrastive Learning.- Importance-based Neuron Selective Distillation for
Interference Mitigation in Multilingual Neural Machine Translation.- Are GPT
Embeddings Useful for Ads and Recommendation?.- Modal interaction-enhanced
Prompt Learning by transformer decoder for Vision-Language Models.- Unveiling
Cybersecurity Threats from Online Chat Groups: A Triple Extraction
Approach.- KSRL: Knowledge Selection based Reinforcement Learning for
Knowledge-Grounded Dialogue.- Prototype-Augmented Contrastive Learning for
Few-shot Unsupervised Domain Adaptation.- Style Augmentation and Domain-aware
Parametric Contrastive Learning for Domain Generalization.- Recent Progress
on Text Summarisation Based on BERT and GPT.- Ensemble Strategy Based on Deep
Reinforcement Learning for Portfolio Optimization.- A Legal Multi-Choice
Question Answering Model Based on BERT and Attention.- Offline Reinforcement
Learning with Diffusion-Based Behavior Cloning Term.- Evolutionary Verbalizer
Search for Prompt-based Few Shot Text Classification.- Graph Contrastive
Learning Method with Sample Disparity Constraint and Feature Structure Graph
for Node Classification.- Learning Category Discriminability for Active
Domain Adaptation.- Multi-Level Contrastive Learning for Commonsense Question
Answering.- Efficient Hash Coding for Image Retrieval based on Improved
Center Generation and Contrastive Pre-training Knowledge Model.- Univarite
Time Series Forecasting via Interactive Learning.- Task Inference for Offline
Meta Reinforcement Learning via Latent Shared Knowledge.- A Quantitative
Spectra Analysis Framework Combining Mixup and Band Attention for Predicting
Soluble Solid Content of Blueberries.- Contextualized Hybrid Prompt-Tuning
for Generation-Based Event Extraction.- udPINNs: An Enhanced PDE Solving
Algorithm Incorporating Domain of Dependence Knowledge.- Joint Community and
Structural Hole Spanner Detection via Graph Contrastive Learning.- A
Reinforcement Learning-based Approach for Continuous Knowledge Graph
Construction.- A Multifactorial Evolutionary Algorithm based on Model
Knowledge Transfer.- Knowledge Leadership, AI Technology Adoption and Big
Data Application Ability.- RFLSem: A lightweight model for textual sentiment
analysis.