Atjaunināt sīkdatņu piekrišanu

E-grāmata: Lagrangian Oceanography: Large-scale Transport and Mixing in the Ocean

  • Formāts - EPUB+DRM
  • Cena: 94,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book uses the Lagrangian approach, especially useful and convenient for studying large-scale transport and mixing in the ocean, to present a detailed view of ocean circulation. This approach focuses on simulations and on monitoring the trajectories of fluid particles, which are governed by advection equations. The first chapter of the book is devoted to dynamical systems theory methods, which provide the framework, methodology and key concepts for the Lagrangian approach. The book then moves on to an analysis of chaotic mixing and cross-stream transport in idealized models of oceanic meandering currents like the Gulfstream in the Atlantic, the Kuroshio in the Pacific, and Antarctic Circumpolar Current, after which the current state of physical oceanography is reviewed. The latter half of the book applies the techniques and methods already described in order to study eddies, currents, fronts and large-scale mixing and transport in the Far-Eastern seas and the north-western part of the Pacific Ocean. Finally, the book concludes with a discussion of Lagrangian simulation and monitoring of water contamination after the Fukushima disaster of 2011. The propagation of Fukushima-derived radionuclides, surface transport across the Kuroshio Extension current, and the role of mesoscale eddies in the transport of Fukushima-derived cesium isotopes in the ocean are examined, and a comparison of simulation results with actual measurements are presented.
Written by some of the world leaders in the application of Lagrangian methods in oceanography, this title will be of benefit to the oceanographic community by presenting the necessary background of the Lagrangian approach in an accessible manner.
1 The Dynamical Systems Theory Approach to Transport and Mixing in Fluids
1(18)
1.1 Chaotic Advection
1(6)
1.2 Chaotic Scattering of Fluid Particles at a Point Vortex Embedded in a Time-Periodic Background Flow
7(12)
1.2.1 Invariant Sets of the Flow
7(4)
1.2.2 Geometry of Chaotic Scattering and Its Fractal Properties
11(5)
References
16(3)
2 Chaotic Transport and Mixing in Idealized Models of Oceanic Currents
19(64)
2.1 Chaotic Advection with Analytic Geophysical Models: Introductory Remarks
19(1)
2.2 Chaotic Transport and Mixing in a Kinematic Model of a Meandering Jet Current
20(45)
2.2.1 The Model Flow and Unstable Periodic Trajectories
20(3)
2.2.2 Origin and Bifurcations of Period-4 Unstable Orbits
23(7)
2.2.3 Chaotic Zonal Transport and Dynamical Traps
30(17)
2.2.4 Chaotic Cross-Jet Transport and Detection of Transport Barriers
47(2)
2.2.5 Detecting the Central Invariant Curve
49(16)
2.3 Chaotic Cross-Jet Transport in a Dynamical Model of a Meandering Jet Current with Propagating Rossby Waves
65(18)
2.3.1 The Dynamical Model with Rossby Waves
65(3)
2.3.2 Mechanisms of Chaotic Cross-Jet Transport for Odd Wavenumbers and Detection of Transport Barriers
68(6)
2.3.3 Chaotic Cross-Jet Transport for Even-Odd Wavenumbers
74(5)
References
79(4)
3 Oceans from the Space and Operational Oceanography
83(12)
3.1 Monitoring Oceans with Satellite Sensors
83(4)
3.2 Satellite Altimetry and AVISO Velocity Field
87(4)
3.3 Satellite-Tracked Buoys in the Ocean
91(4)
References
93(2)
4 Lagrangian Tools to Study Transport and Mixing in the Ocean
95(22)
4.1 Lagrangian Indicators and Lagrangian Maps
95(4)
4.2 Hyperbolicity in the Ocean
99(4)
4.3 Finite-Time Lyapunov Exponents
103(5)
4.3.1 Finite-Time Lyapunov Exponents for an n-Dimensional Vector Field
103(2)
4.3.2 Singular-Value Decomposition and Evolution Matrix for Two-Dimensional Case
105(3)
4.4 Lagrangian Coherent Structures
108(9)
References
110(7)
5 Transport of Subtropical Waters in the Japan Sea
117(24)
5.1 General Pattern of Circulation in the Japan Sea and Formulation of the Problem
117(4)
5.2 Statistical Analysis of Lagrangian Transport of Subtropical Water
121(20)
5.2.1 Northward Transport of Subtropical Water and Advection Velocity Field
121(3)
5.2.2 Gates and Barriers to the Northward Transport of Subtropical Water
124(3)
5.2.3 Transport Pathways of Subtropical Water in the Central Japan Sea
127(1)
5.2.4 Lagrangian Intrusions of Subtropical Water Across the Subpolar Front
128(7)
5.2.5 Effect of Velocity-Field Errors on Statistical Properties of Lagrangian Transport
135(2)
References
137(4)
6 Dynamics of Eddies in the Ocean
141(44)
6.1 Eddies in the Ocean
141(2)
6.2 Altimetry-Based Lagrangian Analysis of Formation, Structure, Evolution, and Splitting of Mesoscale Kuril Eddies
143(21)
6.2.1 Mesoscale Kuril Eddies
143(3)
6.2.2 CTD Sampling of the Bussol' Eddy A
146(3)
6.2.3 Lagrangian Analysis of the Sampled Bussol' Eddy A
149(9)
6.2.4 Vertical Profiles of Temperature and Salinity by the Argo Floats
158(6)
6.3 Lagrangian Analysis of the Vertical Structure of Numerically Simulated Eddies in the Japan Sea
164(21)
6.3.1 Topographically Constrained Frontal Eddies in the Japan Basin
164(1)
6.3.2 Regional Circulation Marine Hydrophysical Institute Model
165(4)
6.3.3 Three-Dimensional Structure and Evolution of Eddies in the Japan Basin
169(12)
References
181(4)
7 Fukushima-Derived Cesium Isotopes in the Northwestern Pacific: Direct Observation and Altimetry-Based Simulation of Propagation
185(38)
7.1 Transport of Cesium Isotopes in the Kuroshio Extension Area Just After the Accident
185(12)
7.1.1 The Kuroshio Rings and Near-Surface Cross-Jet Transport
187(7)
7.1.2 Comparison of Simulation with Observation of Cesium Isotopes During the Cruises in June and July 2011
194(3)
7.2 Role of Mesoscale Eddies in Transport of Cesium Isotopes
197(26)
7.2.1 R/V Professor Gagarinskiy Cruise in June-July 2012
198(1)
7.2.2 Observed and Simulated Horizontal Distribution of Cesium Isotopes and Identification of Mesoscale Eddies in the Area
199(9)
7.2.3 Vertical Structure of Eddies and Vertical Distribution of 134Cs and 137Cs
208(5)
7.2.4 Tracking Maps for Samples Collected in Centers of the Eddies of the Subarctic Front
213(4)
7.2.5 Concluding Remarks
217(1)
References
218(5)
8 Lagrangian Fronts and Coherent Structures Favorable for Fishery and Foraging Strategy of Top Marine Predators
223(1)
8.1 Hydrological and Lagrangian Fronts
223(1)
8.2 Lagrangian Fronts Favorable for Saury Fishing
224(13)
8.2.1 Identifying Lagrangian Fronts
224(8)
8.2.2 Accumulation of Saury Catches at Strong Lagrangian Fronts
232(5)
8.3 Lagrangian Fronts Favorable for Fishery of Neon Flying Squid
237(8)
8.3.1 Fishery at Lagrangian Intrusions of the Subarctic Front
240(2)
8.3.2 Fishery Inside and Around Hokkaido Mesoscale Eddies
242(1)
8.3.3 Fishery at Lagrangian Intrusions in the Central Part of the Studied Area
243(2)
8.4 Foraging Strategy of Top Marine Predators and Lagrangian (Sub)Mesoscale Features
245(1)
8.4.1 Foraging Strategy of Great Frigatebirds and Lagrangian Coherent Structures
245(5)
8.4.2 Preference of Southern Elephant Seals and Mediterranean Whales for Distinct Mesoscale Features
250(4)
References
254
Erratum
1
Glossary of Some Terms in Dynamical Systems Theory
257
Bifurcations
257(1)
Cantori
257(1)
Dynamical traps
258(1)
Fractals
258(1)
Hamiltonian chaos
259(1)
Hamiltonian dynamics
260(1)
Heteroclinic and homoclinic structures
261(1)
Invariant tori
262(1)
Islands of stability
263(1)
Kolmogorov--Arnold--Moser theorem and KAM tori
263(1)
Lyapunov exponents
263(1)
Manifolds
264(2)
Nonlinear resonance
266(1)
Phase space
267(1)
Poincare map
267(2)
Separatrix
269(1)
Stable and unstable motion
269(1)
Stationary points
270(1)
Trajectories
271(2)
References
273
Sergey V. Prants is the Head of the Department of Oceanic and Atmospheric Physics and Head of the Laboratory of Nonlinear Dynamical Systems of the Pacific Oceanological Institute of the Russian Academy of Sciences. His research interests comprise of nonlinear dynamical processes, Hamiltonian and dissipative chaos, self-organization, and dynamical symmetries. He's the author of five books and one hundred papers in international journals.