Introduction |
|
xix | |
|
Part I Vulnerabilities and Mitigation Techniques |
|
|
3 | (178) |
|
|
5 | (18) |
|
|
5 | (3) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
8 | (2) |
|
|
9 | (1) |
|
|
10 | (1) |
|
Access Control and Identity Management |
|
|
10 | (1) |
|
|
11 | (10) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
Hash Message Authentication Code |
|
|
14 | (1) |
|
|
15 | (1) |
|
Confidentiality with Asymmetric Cryptosystems |
|
|
16 | (1) |
|
Integrity and Authentication with Asymmetric Cryptosystems |
|
|
17 | (1) |
|
Key Distribution and Certificates |
|
|
18 | (1) |
|
Attacks Against Cryptosystems |
|
|
19 | (2) |
|
|
21 | (1) |
|
|
21 | (2) |
|
Defeating a Learning Bridge's Forwarding Process |
|
|
23 | (20) |
|
Back to Basics: Ethernet Switching 101 |
|
|
23 | (4) |
|
|
23 | (1) |
|
|
24 | (2) |
|
Consequences of Excessive Flooding |
|
|
26 | (1) |
|
Exploiting the Bridging Table: MAC Flooding Attacks |
|
|
27 | (7) |
|
Forcing an Excessive Flooding Condition |
|
|
28 | (2) |
|
Introducing the macof Tool |
|
|
30 | (4) |
|
MAC Flooding Alternative: MAC Spoofing Attacks |
|
|
34 | (2) |
|
|
35 | (1) |
|
Preventing MAC Flooding and Spoofing Attacks |
|
|
36 | (4) |
|
|
36 | (1) |
|
|
37 | (2) |
|
Unknown Unicast Flooding Protection |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
41 | (2) |
|
Attacking the Spanning Tree Protocol |
|
|
43 | (24) |
|
Introducing Spanning Tree Protocol |
|
|
43 | (10) |
|
|
46 | (1) |
|
Understanding 802.1D and 802.1Q Common STP |
|
|
46 | (1) |
|
Understanding 802.1w Rapid STP |
|
|
46 | (1) |
|
Understanding 802.1s Multiple STP |
|
|
47 | (1) |
|
STP Operation: More Details |
|
|
47 | (6) |
|
|
53 | (11) |
|
Attack 1: Taking Over the Root Bridge |
|
|
55 | (3) |
|
|
58 | (1) |
|
|
58 | (2) |
|
Attack 2: DoS Using a Flood of Config BPDUs |
|
|
60 | (2) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
Attack 3: DoS Using a Flood of Config BPDUs |
|
|
63 | (1) |
|
Attack 4: Simulating a Dual-Homed Switch |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (2) |
|
|
67 | (18) |
|
|
67 | (9) |
|
|
68 | (1) |
|
|
69 | (2) |
|
Attack of the 802.1Q Tag Stack |
|
|
71 | (5) |
|
Understanding Cisco Dynamic Trunking Protocol |
|
|
76 | (4) |
|
|
76 | (4) |
|
Countermeasures to DTP Attacks |
|
|
80 | (1) |
|
|
80 | (2) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (3) |
|
Leveraging DHCP Weaknesses |
|
|
85 | (20) |
|
|
85 | (4) |
|
|
89 | (4) |
|
DHCP Scope Exhaustion: DoS Attack Against DHCP |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (2) |
|
Hijacking Traffic Using DHCP Rogue Servers |
|
|
92 | (1) |
|
Countermeasures to DHCP Exhaustion Attacks |
|
|
93 | (7) |
|
|
94 | (2) |
|
Introducing DHCP Snooping |
|
|
96 | (1) |
|
Rate-Limiting DHCP Messages per Port |
|
|
97 | (1) |
|
|
97 | (2) |
|
DHCP Snooping with Option 82 |
|
|
99 | (1) |
|
Tips for Deploying DHCP Snooping |
|
|
99 | (1) |
|
Tips for Switches That Do Not Support DHCP Snooping |
|
|
100 | (1) |
|
DHCP Snooping Against IP/MAC Spoofing Attacks |
|
|
100 | (3) |
|
|
103 | (1) |
|
|
103 | (2) |
|
|
105 | (16) |
|
|
105 | (3) |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
108 | (4) |
|
Elements of an ARP Spoofing Attack |
|
|
109 | (2) |
|
Mounting an ARP Spoofing Attack |
|
|
111 | (1) |
|
Mitigating an ARP Spoofing Attack |
|
|
112 | (5) |
|
|
112 | (1) |
|
|
112 | (3) |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
116 | (1) |
|
Mitigating Other ARP Vulnerabilities |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
118 | (3) |
|
Exploiting IPv6 Neighbor Discovery and Router Advertisement |
|
|
121 | (14) |
|
|
121 | (8) |
|
|
121 | (1) |
|
|
122 | (4) |
|
|
126 | (1) |
|
Stateless Configuration with Router Advertisement |
|
|
127 | (2) |
|
Analyzing Risk for ND and Stateless Configuration |
|
|
129 | (1) |
|
Mitigating ND and RA Attacks |
|
|
130 | (1) |
|
|
130 | (1) |
|
|
130 | (1) |
|
|
131 | (2) |
|
|
131 | (2) |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
133 | (2) |
|
What About Power over Ethernet? |
|
|
135 | (10) |
|
|
135 | (4) |
|
|
136 | (1) |
|
|
136 | (2) |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
139 | (1) |
|
|
140 | (3) |
|
Defending Against Power Gobbling |
|
|
140 | (1) |
|
Defending Against Power-Changing Attacks |
|
|
141 | (1) |
|
Defending Against Shutdown Attacks |
|
|
141 | (1) |
|
Defending Against Burning Attacks |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
143 | (2) |
|
|
145 | (12) |
|
|
145 | (3) |
|
|
147 | (1) |
|
|
148 | (3) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
151 | (4) |
|
Using Strong Authentication |
|
|
151 | (2) |
|
Relying on Network Infrastructure |
|
|
153 | (2) |
|
|
155 | (1) |
|
|
155 | (2) |
|
|
157 | (8) |
|
|
157 | (4) |
|
|
159 | (2) |
|
|
161 | (1) |
|
|
161 | (2) |
|
Using Strong Authentication |
|
|
162 | (1) |
|
Relying on the Network Infrastructure |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
163 | (2) |
|
Information Leaks with Cisco Ancillary Protocols |
|
|
165 | (16) |
|
|
165 | (4) |
|
|
165 | (2) |
|
|
167 | (2) |
|
|
169 | (1) |
|
IEEE Link Layer Discovery Protocol |
|
|
169 | (1) |
|
|
170 | (4) |
|
|
172 | (1) |
|
|
173 | (1) |
|
Link Aggregation Protocols |
|
|
174 | (4) |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
178 | (3) |
|
Part II How Can a Switch Sustain a Denial of Service Attack? |
|
|
181 | (76) |
|
Introduction to Denial of Service Attacks |
|
|
183 | (14) |
|
How Does a DoS Attack Differ from a DDoS Attack? |
|
|
183 | (1) |
|
|
184 | (2) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
186 | (2) |
|
Attacking the Infrastructure |
|
|
186 | (1) |
|
|
187 | (1) |
|
Mitigating Attacks on Services |
|
|
187 | (1) |
|
Attacking LAN Switches Using DoS and DDoS Attacks |
|
|
188 | (6) |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
190 | (2) |
|
|
192 | (1) |
|
|
192 | (1) |
|
|
193 | (1) |
|
Switch Architecture Attacks |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
194 | (3) |
|
|
197 | (28) |
|
Which Services Reside on the Control Plane? |
|
|
198 | (1) |
|
Securing the Control Plane on a Switch |
|
|
198 | (2) |
|
Implementing Hardware-Based CoPP |
|
|
200 | (6) |
|
Configuring Hardware-Based CoPP on the Catalyst 6500 |
|
|
200 | (1) |
|
|
201 | (2) |
|
|
203 | (1) |
|
Configuring Control Plane Security on the Cisco ME3400 |
|
|
203 | (3) |
|
Implementing Software-Based CoPP |
|
|
206 | (5) |
|
Configuring Software-Based CoPP |
|
|
207 | (4) |
|
Mitigating Attacks Using CoPP |
|
|
211 | (11) |
|
Mitigating Attacks on the Catalyst 6500 Switch |
|
|
211 | (1) |
|
Telnet Flooding Without CoPP |
|
|
211 | (1) |
|
Telnet Flooding with CoPP |
|
|
212 | (3) |
|
|
215 | (3) |
|
Mitigating Attacks on Cisco ME3400 Series Switches |
|
|
218 | (1) |
|
|
218 | (1) |
|
CDP Flooding with L2TP Tunneling |
|
|
219 | (3) |
|
|
222 | (1) |
|
|
222 | (3) |
|
Disabling Control Plane Protocols |
|
|
225 | (14) |
|
Configuring Switches Without Control Plane Protocols |
|
|
225 | (11) |
|
Safely Disabling Control Plane Activities |
|
|
227 | (1) |
|
|
227 | (1) |
|
Disabling Link Aggregation Protocols |
|
|
228 | (1) |
|
|
228 | (1) |
|
|
228 | (1) |
|
Disabling Hot Standby Routing Protocol and Virtual Routing Redundancy Protocol |
|
|
228 | (1) |
|
Disabling Management Protocols and Routing Protocols |
|
|
229 | (1) |
|
|
230 | (2) |
|
Disabling Other Control Plane Activities |
|
|
232 | (1) |
|
|
232 | (1) |
|
Controlling CDP, IPv6, and IEEE 802. 1X |
|
|
233 | (1) |
|
|
234 | (1) |
|
Control Plane Activities That Cannot Be Disabled |
|
|
235 | (1) |
|
Best Practices for Control Plane |
|
|
236 | (1) |
|
|
236 | (3) |
|
Using Switches to Detect a Data Plane DoS |
|
|
239 | (18) |
|
Detecting DoS with NetFlow |
|
|
239 | (10) |
|
Enabling NetFlow on a Catalyst 6500 |
|
|
244 | (2) |
|
NetFlow as a Security Tool |
|
|
246 | (1) |
|
Increasing Security with NetFlow Applications |
|
|
247 | (2) |
|
Securing Networks with RMON |
|
|
249 | (3) |
|
Other Techniques That Detect Active Worms |
|
|
252 | (3) |
|
|
255 | (1) |
|
|
255 | (2) |
|
Part III Using Switches to Augment the Network Security |
|
|
257 | (46) |
|
Wire Speed Access Control Lists |
|
|
259 | (14) |
|
|
260 | (1) |
|
|
261 | (1) |
|
Protecting the Infrastructure Using ACLs |
|
|
261 | (2) |
|
RACL, VACL, and PACL: Many Types of ACLs |
|
|
263 | (4) |
|
|
264 | (1) |
|
|
265 | (2) |
|
|
267 | (1) |
|
Technology Behind Fast ACL Lookups |
|
|
267 | (3) |
|
|
268 | (2) |
|
|
270 | (3) |
|
Identity-Based Networking Services with 802.1X |
|
|
273 | (30) |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
274 | (1) |
|
|
274 | (1) |
|
|
275 | (1) |
|
Discovering Extensible Authentication Protocol |
|
|
275 | (2) |
|
|
277 | (2) |
|
|
279 | (9) |
|
Integration Value-Add of 802.1X |
|
|
281 | (1) |
|
Spanning-Tree Considerations |
|
|
281 | (2) |
|
|
283 | (1) |
|
|
283 | (2) |
|
|
285 | (1) |
|
Port-Security Integration |
|
|
285 | (1) |
|
DHCP-Snooping Integration |
|
|
286 | (1) |
|
Address Resolution Protocol Inspection Integration |
|
|
286 | (1) |
|
|
287 | (1) |
|
Working with Multiple Devices |
|
|
288 | (1) |
|
|
288 | (1) |
|
|
289 | (1) |
|
Working with Devices Incapable of 802.1X |
|
|
289 | (9) |
|
|
290 | (1) |
|
|
291 | (2) |
|
MAC Authentication Primer |
|
|
293 | (1) |
|
|
293 | (5) |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
300 | (3) |
|
Part IV What Is Next in LAN Security? |
|
|
303 | (20) |
|
|
305 | (18) |
|
Enterprise Trends and Challenges |
|
|
305 | (1) |
|
|
306 | (1) |
|
|
306 | (1) |
|
|
307 | (1) |
|
|
307 | (1) |
|
Road to Encryption: Brief History of WANs and WLANs |
|
|
307 | (2) |
|
|
309 | (1) |
|
Link Layer Security: IEEE 802.1AE/af |
|
|
309 | (8) |
|
Current State: Authentication with 802.1X |
|
|
310 | (2) |
|
|
312 | (1) |
|
Authentication and Key Distribution |
|
|
313 | (1) |
|
Data Confidentiality and Integrity |
|
|
314 | (1) |
|
Data Confidentiality (Encryption) |
|
|
314 | (1) |
|
|
314 | (1) |
|
|
314 | (2) |
|
|
316 | (1) |
|
Security Landscape: LinkSec's Coexistence with Other Security Technologies |
|
|
317 | (1) |
|
Performance and Scalability |
|
|
318 | (1) |
|
End-to-End Versus Hop-by-Hop LAN-Based Cryptographic Protection |
|
|
318 | (2) |
|
|
320 | (1) |
|
|
321 | (2) |
Appendix Combining IPsec with L2TPv3 for Secure Pseudowire |
|
323 | (7) |
Index |
|
330 | |