Atjaunināt sīkdatņu piekrišanu

Laser-based Mid-infrared Sources and Applications [Hardback]

  • Formāts: Hardback, 320 pages, height x width x depth: 10x10x10 mm, weight: 454 g
  • Sērija : A Wiley-Science Wise Co-Publication
  • Izdošanas datums: 28-Aug-2020
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1118301811
  • ISBN-13: 9781118301814
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 176,89 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 320 pages, height x width x depth: 10x10x10 mm, weight: 454 g
  • Sērija : A Wiley-Science Wise Co-Publication
  • Izdošanas datums: 28-Aug-2020
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1118301811
  • ISBN-13: 9781118301814
Citas grāmatas par šo tēmu:
"The book describes the most advanced techniques for generating coherent light in the mid-infrared region of the spectrum. These techniques represent diverse areas of photonics and include heterojunction semiconductor lasers, quantum cascade lasers, tunable crystalline lasers, fiber lasers, Raman lasers, and optical parametric laser sources. The book provides a wealth of information on the essential principles and methods of the generation of coherent mid-infrared light and on some of its applications. The tutorial nature of the book makes it an excellent text for physicists and practicing engineers who want to use mid-infrared laser sources in spectroscopy, medicine, remote sensing and other fields, and for researchers in various disciplines requiring abroad introduction to the subject"--

An important guide to the major techniques for generating coherent light in the mid-infrared region of the spectrum

Laser-based Mid-infrared Sources and Applications gives a comprehensive overview of the existing methods for generating coherent light in the important yet difficult-to-reach mid-infrared region of the spectrum (2–20 μm) and their applications.

The book describes major approaches for mid-infrared light generation including ion-doped solid-state lasers, fiber lasers, semiconductor lasers, and laser sources based on nonlinear optical frequency conversion, and reviews a range of applications: spectral recognition of molecules and trace gas sensing, biomedical and military applications, high-field physics and attoscience, and others. Every chapter starts with the fundamentals for a given technique that enables self-directed study, while extensive references help conduct deeper research.

Laser-based Mid-infrared Sources and Applications provides up-to-date information on the state-of the art mid-infrared sources, discusses in detail the advancements made over the last two decades such as microresonators and interband cascade lasers, and explores novel approaches that are currently subjects of intense research such as supercontinuum and frequency combs generation. This important book:

• Explains the fundamental principles and major techniques for coherent mid-infrared light generation

• Discusses recent advancements and current cutting-edge research in the field

• Highlights important biomedical, environmental, and military applications

Written for researchers, academics, students, and engineers from different disciplines, the book helps navigate the rapidly expanding field of mid-infrared laser-based technologies.

About the Author xi
Preface xiii
1 Mid-IR Spectral Range
1(6)
1.1 Definition of the Mid-IR
1(2)
1.2 The World's Second Laser
3(1)
1.3 Internal Vibrations of Molecules
4(3)
References
5(2)
2 Solid-state Crystalline Mid-IR Lasers
7(36)
2.1 Rare-Earth-based Tm3+, Ho3+, and Er3+ Lasers
7(11)
2.1.1 Tm3+ Lasers
7(3)
2.1.2 Ho3+ Lasers
10(3)
2.1.3 Er3+ Lasers
13(5)
2.2 Transition Metal Cr2+ and Fe2+Lasers
18(17)
2.2.1 Spectroscopic Properties of Cr2+ and Fe2+
18(3)
2.2.2 Lasers Based on Chalcogenide Crystals Doped with Cr2+
21(1)
2.2.2.1 Broadly Tunable Cr2+ Lasers
21(2)
2.2.2.2 High-power Continuous-wave Cr2+ Lasers
23(1)
2.2.2.3 High-power Cr2+ CW Laser Systems Operating at 2.94 μm
23(1)
2.2.2.4 Gain-switched High-power Cr2+ Lasers
24(1)
2.2.2.5 Microchip Cr2+ Lasers
25(1)
2.2.2.6 Waveguide and Thin-disk CnZnSe Lasers
26(1)
2.2.2.7 Mode-locked Cr:ZnS/Cr:ZnSe Lasers
27(3)
2.2.3 Lasers Based on Chalcogenide Crystals Doped with Fe2+
30(1)
2.2.3.1 Free-running Pulsed Fe:ZnSe/ZnS Lasers
30(2)
2.2.3.2 Gain-switched Regime of Fe2+ Lasers at Room Temperature
32(1)
2.2.3.3 Continuous-wave Fe2+ Lasers
33(2)
2.2.3.4 Tunable Fe2+ Lasers at Room Temperature
35(1)
2.2.3.5 Ultrafast Amplifier in the 3.8---4.8 μm Range
35(1)
2.3 Summary
35(8)
References
36(7)
3 Fiber Mid-IR Lasers
43(22)
3.1 Introduction
43(1)
3.2 Continuous-wave Mid-IR Fiber Lasers
44(10)
3.2.1 Tm-based Fiber Lasers
44(3)
3.2.2 Ho-based Fiber Lasers
47(2)
3.2.3 Er-based Fiber Lasers
49(3)
3.2.4 Dy-based Fiber Lasers
52(1)
3.2.5 Raman Fiber Lasers
52(2)
3.3 Q-switched Mid-IR Fiber Lasers
54(2)
3.4 Mode-locked Mid-IR Fiber Lasers
56(4)
3.5 Summary
60(5)
References
61(4)
4 Semiconductor Lasers
65(44)
4.1 Heterojunction Mid-IR Lasers
65(8)
4.1.1 GaSb-based Diode Lasers
66(4)
4.1.2 Distributed Feedback GaSb-based Lasers
70(3)
4.2 Quantum Cascade Lasers
73(14)
4.2.1 High Power and High Efficiency QCLs
76(3)
4.2.2 Single-mode Distributed Feedback (DFB) QCLs
79(3)
4.2.3 Broadly Tunable QCLs with an External Cavity
82(3)
4.2.4 Short-wavelength (<4 μm) QCLs
85(1)
4.2.5 QCLs at Long (16---21 μm) Wavelengths
86(1)
4.3 Interband Cascade Lasers
87(7)
4.4 Optically Pumped Semiconductor Disk Lasers (OPSDLs)
94(6)
4.4.1 (AlGaIn)(AsSb)-based OPSDL at λ 2.3 μm
95(1)
4.4.2 PbS-based OPSDL at λ = 2.6--3 μm
96(1)
4.4.3 PbSe-based OPSDL at λ = 4.2--4.8 μm
96(2)
4.4.4 PbTe-based OPSDL at λ = 4.7--5.6 μm
98(2)
4.5 Summary
100(9)
References
100(9)
5 Mid-IR by Nonlinear Optical Frequency Conversion
109(80)
5.1 Two Approaches to Frequency Downconversion Using Second-order Nonlinearity
109(12)
5.1.1 Difference Frequency Generation
111(1)
5.1.2 Optical Parametric Oscillators (OPOs)
112(3)
5.1.3 Brief Review of Χ(2) Nonlinear Crystals for Mid-IR
115(1)
5.1.3.1 Periodically Poled Oxides
116(1)
5.1.3.2 Birefringent Crystals
116(3)
5.1.3.3 Emerging QPM Nonlinear Optical Materials
119(2)
5.2 Continuous-wave (CW) Regime
121(9)
5.2.1 DFG of CW Radiation
121(2)
5.2.2 CW OPOs
123(7)
5.3 Pulsed Regime
130(23)
5.3.1 Pulsed DFG
130(3)
5.3.2 Pulsed OPOs
133(1)
5.3.2.1 Broadly Tunable Pulsed OPOs
133(10)
5.3.2.2 Narrow-linewidth Pulsed OPOs
143(4)
5.3.2.3 High Average Power OPOs
147(3)
5.3.2.4 High Pulse Energy OPOs
150(2)
5.3.2.5 Waveguide OPOs
152(1)
5.4 Regime of Ultrashort (ps and fs) Pulses
153(15)
5.4.1 Ultrafast DFG
153(4)
5.4.2 Intra-pulse DFG (Optical Rectification)
157(4)
5.4.3 Ultrafast OPOs
161(1)
5.4.3.1 Picosecond Mode
161(2)
5.4.3.2 Femtosecond Mode
163(2)
5.4.4 Ultrafast OPGs
165(2)
5.4.5 Ultrafast OPAs
167(1)
5.5 Raman Frequency Converters
168(6)
5.5.1 Crystalline Raman Converters
169(1)
5.5.2 Fiber Raman Converters
169(1)
5.5.3 Silicon Raman Converters
170(1)
5.5.4 Diamond Raman Converters
171(1)
5.5.5 Other Raman Converters
172(2)
5.6 Summary
174(15)
References
174(15)
6 Supercontinuum and Frequency Comb Sources
189(58)
6.1 Supercontinuum Sources
189(24)
6.1.1 SC from Lead-silicate Glass Fibers
191(1)
6.1.2 SC from Tellurite Glass Fibers
192(2)
6.1.3 SC from ZBLAN Fibers
194(2)
6.1.4 SC from Chalcogenide Glass Fibers
196(7)
6.1.5 SC from Waveguides
203(4)
6.1.6 SC from Bulk Crystals
207(5)
6.1.7 Other SC Sources
212(1)
6.2 Frequency Comb Sources
213(22)
6.2.1 Direct Comb Sources from Mode-locked Lasers
214(1)
6.2.2 Combs Produced by Spectral Broadening in NL Fibers and Waveguides
215(2)
6.2.3 Combs Produced by Difference Frequency Generation
217(3)
6.2.4 OPO-based Combs
220(6)
6.2.5 Combs Based on Optical Subharmonic Generation
226(3)
6.2.6 Microresonator-based Kerr Combs
229(5)
6.2.7 Combs from Quantum Cascade Lasers
234(1)
6.2.8 Combs from Interband Cascade Lasers
235(1)
6.3 Summary
235(12)
References
236(11)
7 Mid-IR Applications
247(40)
7.1 Spectroscopic Sensing and Imaging
247(11)
7.1.1 QCLs for Spectroscopy and Trace-gas Analysis
248(4)
7.1.2 Spectroscopy with ICLs
252(1)
7.1.3 Spectroscopy with DFG and OPO Sources
252(1)
7.1.4 Broadband Spectroscopy with Frequency Combs
253(2)
7.1.5 Hyperspectral Imaging
255(3)
7.2 Medical Applications
258(7)
7.2.1 Laser Tissue Interactions
258(1)
7.2.1.1 Holmium and Thulium Surgical Lasers
258(1)
7.2.1.2 Er:YAG Lasers (λ = 2.9 μ)
259(1)
7.2.1.3 Importance of the Spectral Band of 6--7 μ
260(1)
7.2.2 Medical Breath Analysis
261(1)
7.2.2.1 Ethane (C2H6)
262(1)
7.2.2.2 No
262(1)
7.2.2.3 NH3
263(1)
7.2.2.4 Co
263(1)
7.2.2.5 OCS
263(1)
7.2.2.6 Optical Frequency Comb Spectroscopy for Breath Analysis
264(1)
7.3 Nano-IR Imaging and Chemical Mapping
265(2)
7.4 Plasmonics in the Mid-IR
267(2)
7.5 Infrared Countermeasures
269(1)
7.6 Extreme Nonlinear Optics and Attosecond Science
270(3)
7.7 Other Applications
273(14)
7.7.1 Laser Wake-field Accelerators
273(1)
7.7.2 Laser Acceleration in Dielectric Structures
274(1)
7.7.3 Free-space Communications
274(1)
7.7.4 Organic Material Processing
275(1)
References
276(11)
Index 287
Konstantin L. Vodopyanov, is the 21st Century Scholar Endowed Chair and Professor of Optics and Physics at CREOL, the College of Optics and Photonics at the University of Central Florida. He is a world expert in mid-IR lasers, laser-matter interactions, nonlinear optics, and laser spectroscopy.