Atjaunināt sīkdatņu piekrišanu

E-grāmata: Laser Physics: From Principles to Practical Work in the Lab

  • Formāts: PDF+DRM
  • Sērija : Graduate Texts in Physics
  • Izdošanas datums: 16-Mar-2014
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319051284
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Graduate Texts in Physics
  • Izdošanas datums: 16-Mar-2014
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319051284
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook originates from a lecture course in laser physics at the Karlsruhe School of Optics and Photonics at the Karlsruhe Institute of Technology (KIT). A main goal in the conception of this textbook was to describe the fundamentals of lasers in a uniform and especially lab-oriented notation and formulation as well as many currently well-known laser types, becoming more and more important in the future. It closes a gap between the measureable spectroscopic quantities and the whole theoretical description and modeling. This textbook contains not only the fundamentals and the context of laser physics in a mathematical and methodical approach important for university-level studies. It allows simultaneously, owing to its conception and its modern notation, to directly implement and use the learned matter in the practical lab work. It is presented in a format suitable for everybody who wants not only to understand the fundamentals of lasers but also use modern lasers or even develop and make laser setups. This book tries to limit prerequisite knowledge and fundamental understanding to a minimum and is intended for students in physics, chemistry and mathematics after a bachelor degree, with the intention to create as much joy and interest as seen among the participants of the corresponding lectures.

This university textbook describes in its first three chapters the fundamentals of lasers: light-matter interaction, the amplifying laser medium and the laser resonator. In the fourth chapter, pulse generation and related techniques are presented. The fifth chapter gives a closing overview on different laser types gaining importance currently and in the future. It also contains a set of examples on which the theory learned in the first four chapters is applied and extended.

Recenzijas

It originates from a laser physics lecture that has been given for a number of years, and that intends to be lab-oriented for university-level students of physics, chemistry and mathematics. The scope of the book is also reflected in the breadth of 170 pages. The designated audience are post-bachelor students who want to understand, intend to use, and possibly work on modern laser systems, and the book should be beneficial in this regard. (Manuel Vogel, Contemporary Physics, Vol. 57 (4), 2016)

1 Quantum-Mechanical Fundamentals of Lasers
1(22)
1.1 Einstein Relations and Planck's Law
1(4)
1.2 Transition Probabilities and Matrix Elements
5(4)
1.2.1 Dipole Radiation and Spontaneous Emission
5(1)
1.2.2 Stimulated Emission and Absorption
6(3)
1.3 Mode Structure of Space and the Origin of Spontaneous Emission
9(5)
1.3.1 Mode Density of the Vacuum and Optical Media
9(2)
1.3.2 Vacuum Fluctuations and Spontaneous Emission
11(3)
1.4 Cross Sections and Broadening of Spectral Lines
14(9)
1.4.1 Cross Sections of Absorption and Emission
14(4)
1.4.2 Natural Line Width and Broadening of Spectral Lines
18(3)
References
21(2)
2 The Laser Principle
23(26)
2.1 Population Inversion and Feedback
23(12)
2.1.1 The Two-Level System
24(1)
2.1.2 Three-and Four-Level Systems
24(9)
2.1.3 The Feedback Condition
33(2)
2.2 Spectroscopic Laser Rate Equations
35(9)
2.2.1 Population and Stationary Operation
35(6)
2.2.2 Relaxation Oscillations
41(3)
2.3 Potential Model of the Laser
44(5)
References
47(2)
3 Optical Resonators
49(26)
3.1 Linear and Ring Resonators and Their Stability Criteria
49(6)
3.1.1 Basics of Matrix Optics
49(1)
3.1.2 Stable and Unstable Linear Resonators
50(4)
3.1.3 Stable and Unstable Ring Resonators
54(1)
3.2 Mode Structure and Intensity Distribution
55(17)
3.2.1 The Fundamental Mode: The Gaussian Beam
56(5)
3.2.2 Higher-Order Transverse Modes and Beam Quality
61(8)
3.2.3 Longitudinal Modes and Hole-Burning Effects
69(3)
3.3 Line Width of the Laser Emission
72(3)
References
74(1)
4 Generation of Short and Ultra-Short Pulses
75(30)
4.1 Basics of Q-Switching
75(17)
4.1.1 Active Q-Switching
75(6)
4.1.2 Experimental Realization
81(5)
4.1.3 Passive Q-Switching
86(3)
4.1.4 Scaling Laws of Repetitive Q-Switching
89(3)
4.2 Basics of Mode Locking and Ultra-Short Pulses
92(13)
4.2.1 Active Mode Locking
94(2)
4.2.2 Passive Mode Locking
96(2)
4.2.3 Pulse Compression of Ultra-Short Pulses
98(5)
References
103(2)
5 Laser Examples and Their Applications
105(62)
5.1 Gas Lasers: The Helium-Neon-Laser
105(3)
5.2 Solid-State Lasers
108(27)
5.2.1 The Nd3+-Laser
109(12)
5.2.2 The Tm3+-Laser
121(9)
5.2.3 The Ti3+:Al2O3 Laser
130(5)
5.3 Special Realisations of Lasers
135(32)
5.3.1 Thermal Lensing and Thermal Stress
136(4)
5.3.2 The Fiber Laser
140(18)
5.3.3 The Thin-Disk Laser
158(7)
References
165(2)
Index 167
Born in 1979 in Mannheim, Germany, Marc Eichhorn studied Physics at the Ruprecht-Karls University Heidelberg, Germany, from 1999 to 2003 (when he received his Diploma degree). In 2005 he achieved the Dr. rer. nat. degree at the Albert-Ludwigs University Freiburg, Germany and became a Lecturer of Laser Physics at the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, in 2008. He habilitated in experimental physics at the University of Hamburg, Germany, in 2009. Marc Eichhorn has been a Lecturer for laser metrology at the KIT, Karlsruhe, Germany, since 2012.